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DOSE COEFFICIENTS FOR INTAKES OF RADIONUCLIDES
BY MEMBERS OF THE PUBLIC: PART 3

ICRP PUBLICATION 1XX

Approved by the Commission in MMMMM 202X

Abstract-This report is the third in a series of documents giving age-dependent dose
coefficients for members of the public for environmental intakes of radionuclides by inhalation
and ingestion. This series replaces the Publication 56 series (ICRP, 1989, 1993, 1995b,c,
1996a, 2001, 2004) of documents. The revised dose coefficients have been calculated using the
Publication 100 (ICRP, 2006) human alimentary tract model (HATM) and Publication 130
(ICRP, 2016) revision of the human respiratory tract model (HRTM). Revisions have also been
made to many of the models that describe the systemic biokinetics of radionuclides absorbed
to blood, making them more physiologically realistic representations of uptake and retention
in organs and tissues and of excretion. Changes have been implemented that were introduced
in Publication 103 (ICRP, 2007) to: the radiation weighting factors used in the calculation of
equivalent doses to tissues; the tissue weighting factors used in the calculation of effective
dose; and the separate calculation of equivalent doses to males and females with sex-averaging
in the calculation of effective dose. Reference voxel anatomical computational phantoms (i.e.
models of the human body based on medical imaging data), have replaced the composite
mathematical models used for previous calculations of organ doses. Dose calculations were
also improved by using Publication 107 (ICRP, 2008) updated radionuclide decay data and
implementing the Publication 116 (ICRP, 2010) treatment of radiation transport, using the
Publication 110 (ICRP, 2006) adult reference computational phantoms of the human body and
the Publication 143 (ICRP, 2020) paediatric reference computational phantoms.

© 20YY ICRP. Published by SAGE.

Keywords: Environmental exposure; Internal dose assessment; Biokinetic and dosimetric
models
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173 MAIN POINTS

174 e This report is the third in a series of documents giving age-dependent dose
175 coefficients for members of the public for environmental intakes of radionuclides
176 by inhalation and ingestion. This series replaces the Publication 56 series (ICRP,
177 1989, 1993, 1995b,c, 1996a, 2001, 2004) of documents.

178

179 e The data provided are age-dependent dose coefficients for members of the public
180 for environmental intakes of radionuclides by inhalation and ingestion. As in the
181 Publication 56 series (ICRP, 1989, 1993, 1995b,c, 1996a, 2001, 2004), dose
182 coefficients are presented in this series of reports for intakes by 3-mo-old infants,
183 1-, 5-, 10-, and 15-y-old children, and adults.

184

185 e The data provided in the printed reports are restricted to tables of committed
186 effective dose per intake (Sv Bq™!) for inhalation and ingestion. Data are provided
187 for all absorption types and for the most common isotope(s) of each element. The
188 electronic annex that accompanies this series of reports contains a comprehensive
189 set of committed effective and equivalent dose coefficients per intake.

190

191 e This current report provides the above data for the following elements: beryllium
192 (Be), fluorine (F), sodium (Na), magnesium (Mg), aluminium (Al), silicon (Si),
193 chlorine (Cl), potassium (K), scandium (Sc), titanium (Ti), vanadium (V),
194 chromium (Cr), manganese (Mn), copper (Cu), gallium (Ga), germanium (Ge),
195 arsenic (As), bromine (Br), rubidium (Rb), rhodium (Rh), palladium (Pd),
196 cadmium (Cd), indium (In), tin (Sn), hafnium (Hf), tantalum (Ta), tungsten (W),
197 rhenium (Re), osmium (Os), platinum (Pt), gold (Au), mercury (Hg), thallium (T1),
198 astatine (At) and francium (Fr).

199
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1. INTRODUCTION

(1) The present report is Part 3 of a report series aimed at providing revised dose
coefficients for members of the public, for intakes of radionuclides by inhalation and ingestion.
This report series replaces Publications 56, 67, 69, 71, 72, 88 and 95 (ICRP, 1989, 1993b,
1995b,c, 1996a, 2001, 2004). The revised dose coefficients provided in this new series have
been calculated using the Human Alimentary Tract Model (HATM) (ICRP, 2006) and a
revision of the Human Respiratory Tract Model (HRTM) (ICRP, 2015), which takes account
of more recent data. Revisions have also been made to many models for the systemic
biokinetics of radionuclides, making them more physiologically realistic representations of
uptake and retention in organs and tissues and of excretion.

(2) Dose coefficients have been calculated for radioisotopes of the elements which are
expected to be released into the environment as a result of human activities, such as uranium
mining and milling, conversion, enrichment and fabrication, power station operations, fuel
reprocessing, waste storage and disposal, and considered to be of significance for public
radiation protection purposes. In addition, naturally occurring radionuclides are present in the
environment, and their concentrations may be modified by human activities. Consequently, the
range of radionuclides to be addressed includes those of natural origin, fission products,
actinides, and activation products.

1.1. Methodology used in this publication series

(3) The general methodology for producing the biokinetic and dosimetric models is
described in Part 1 of this report series (ICRP, 2024). For each element, detailed reviews of the
literature were carried out to identify experimental studies and human contamination cases that
provide information to quantify absorption to blood from the respiratory and alimentary tracts,
and the biokinetics following systemic uptake. These reviews, and the analyses of the data
obtained from them, are summarised in each element section.

(4) The chemical forms considered in this report series are those found in workplaces and
already described in the Occupational Intakes of Radionuclides (OIR) series (ICRP, 2015, 2016,
2017, 2019, 2022). Since most of the radionuclides released in the environment may be
gradually internalised in the food chain, an additional organic chemical form is taken into
consideration for ingestion by humans.

(5) To provide dose coefficients for members of the public, it is necessary to consider the
effect of age on the biokinetics of radionuclides and on anatomical and physiological
parameters. The biokinetic parameter values used for the adults in this series of report are taken
from the OIR series (ICRP 2015, 2016, 2017, 2019, 2022). Age-specific biokinetic parameter
values are given in this series of reports for intakes by 3-mo-old infants, 1-, 5-, 10-, and 15-y-
old children, in addition to the adults. Contamination of embryo and foetus from intakes of
radionuclides by mothers and from ingestion of radionuclides in milk will be treated in further
reports.

(6) Dose coefficients are presented in this series of reports for intakes by 3-mo-old infants
and 1-, 5-, 10-, and 15-y-old children, in addition to adults. In most cases the adult is taken to
be age 20 y and higher. This means that computational phantoms for adults and biokinetic
parameter values for adults including transfer coefficients, deposition fractions for inhaled
activity, and fa values for activity entering the alimentary tract are applied to age 20 y and
higher. The only exception is for transfer coefficients for biokinetic models describing the
systemic behaviour of absorbed ‘“bone-seeking” radionuclides such as the alkaline earth
elements and actinide elements (See Part 2 of this Series, ICRP 20XX); for these models the
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transfer coefficients for the adult apply to age 25 y and higher, the rationale being that the
skeleton is not fully mature until about age 25 y. In the calculations of the activity in source
regions of the body following intakes at preadult ages, continuous changes with age in the
transfer coefficients and other age-specific biokinetic parameter values governing the
distribution and retention of the radionuclide are obtained by interpolation according to age.

(7)  For application to other ages and for protracted intakes, it is considered here, as in the
Publication 56 series (e.g., ICRP, 1989) that tissue doses can be estimated by applying the age-
specific dose coefficients to the age ranges given below:

3 mo: from 0 to 12 mo of age
ly:fromlyto2y
Sy:morethan2yto7y

10 y: more than 7y to 12y
15 y: morethan 12y to 17y
adult: more than 17 y.

(8) in the Publication 56 series, a single Reference Person is used to represent each age-
group. Generally, biokinetic parameter values for males have been adopted because of the
availability of biokinetic data. Where there are known differences between sexes in the
biokinetics of an element, this is noted in the relevant section of the biokinetic data in OIR:
Parts 2—-5 (ICRP, 2016a, 2017, 2019, 2022) or in this volume. Energy absorption is considered
in models representing the Reference Male and Reference Female at each age.

1.2. Data presented in this report series

(9) Each element section of this report series includes reviews of data on, ingestion and
systemic biokinetics and the structure and parameter values of the reference systemic biokinetic
model. For inhalation, reviews of data in OIR Parts 2 — 5 are adopted and are simply
summarised in this series of reports. More specifically, the data used in this third report in the
series come mainly from Publication 151 (OIR Part 5; ICRP, 2022)

(10) The data provided are age-dependent dose coefficients for members of the public for
environmental intakes of radionuclides by inhalation and ingestion. As in the Publication 56
series, dose coefficients are presented in this series of reports for intakes by 3-mo-old infants,
1-, 5-, 10-, and 15-y-old children, and adults.

(11) The data provided in the printed reports are restricted to tables of committed effective
dose per intake (Sv Bq!) for inhalation and ingestion. Data are provided for all absorption
types and for the most common isotope(s) of each element. In cases for which sufficient
information is available [principally for actinide elements, see Part 2 (ICRP, 20XX)], lung
absorption is specified for certain chemical forms, and dose coefficients are calculated
accordingly. The sizes of particles inhaled by the Reference Individuals are assumed to be log-
normally distributed with an activity median aerodynamic diameter (AMAD) of 1 pm and
geometric standard deviation o, of approximately 2.5 (ICRP, 2024). They are assumed to have
a density of 3.00 g cm, and a shape factor of 1.5. An exception is made for the short-lived
progeny of radon, described in the previous report of this series (ICRP, 2024).

(12) The electronic annex that accompanies this series of reports contains a comprehensive
set of committed effective and equivalent dose coefficients. Data are presented for almost all
radionuclides included in Publication 107 (ICRP, 2008) that have half-lives equal to or greater
than 10 min, and for other selected radionuclides. Data are provided for a range of physico-
chemical forms and for aerosols with median sizes ranging from an activity median
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thermodynamic diameter (AMTD) of 0.001 um to an AMAD of 20 um. Data for intake by
ingestion (for specified values of fa) are also provided.

(13) This current report provides the above data for all the elements included in OIR Part
5, except Ni, Se and Ag, which have already been reported in Part 1 of this series: beryllium
(Be), fluorine (F), sodium (Na), magnesium (Mg), aluminium (Al), silicon (Si), chlorine (Cl),
potassium (K), scandium (Sc), titanium (T1), vanadium (V), chromium (Cr), manganese (Mn),
copper (Cu), gallium (Ga), germanium (Ge), arsenic (As), bromine (Br), rubidium (Rb),
rhodium (Rh), palladium (Pd), cadmium (Cd), indium (In), tin (Sn), hafnium (Hf), tantalum
(Ta), tungsten (W), rhenium (Re), osmium (Os), platinum (Pt), gold (Au), mercury (Hg),
thallium (TT1), astatine (At), and francium (Fr).

10
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2. BERYLLIUM (Z =4)
2.1. Routes of Intake
2.1.1. Inhalation
(14) For beryllium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of beryllium are given in Table 2.1 [taken from Section 2 of Publication

151 (ICRP, 2022)].

Table 2.1. Absorption parameter values for inhaled and ingested beryllium.

Absorption parameter values”

Inhaled particulate materials f; s (d7) ss (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 8x1073 5x1073 5%1073 5x1073 5%1073 5x1073

“It is assumed that the bound state can be neglected for beryllium (i.e. f, = 0). The values of s, for Type F, M and
S forms of beryllium (30, 3 and 3 d™' respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of beryllium applicable to the age-group of interest (e.g., 0.005 for
adults).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.005 for adults).

2.1.2. Ingestion
2.1.2.1. Adults

(15) On the basis of the available data, a fractional absorption of 0.005 was adopted for all
beryllium compounds in Publications 30, 72 and 151 (ICRP, 1981, 1995c, 2022; for details see
Section 2 of Publication 151). The same value of fa = 0.005 is used in this publication for all
forms of beryllium ingested by adult members of the public.

2.1.2.2. Children

(16) Moskalev et al. (1988) reported that beryllium absorption from the fluoride in the
gastro-intestinal tracts of 1-, 2- and 4-week-old rats was 1.5 times greater than in adults. A
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value of fa = 0.008 is therefore adopted here for 3-month-old infants. The adult value of fa =
0.005 is used for 1-y-old and older children.

2.1.3. Systemic distribution, retention and excretion of beryllium
2.1.3.1. Biokinetic data

(17) Zhu et al. (2010) determined concentrations of beryllium in 17 tissues obtained from
autopsies of up to 68 Chinese men from four areas of China. The subjects were considered
healthy until the time of sudden accidental death, unrelated to ionizing radiations. The
beryllium concentration was also measured in blood of living subjects from the same areas.
Based on median beryllium concentrations in tissues together with reference tissue masses,
about 36% of systemic beryllium (defined here as total-body beryllium minus beryllium in the
lungs) was contained in bone, 30% in skeletal muscle, 17% in fat, 8% in blood, 3% in skin,
1.5% in liver, and 0.05% in kidneys. As a central estimate, the mass of beryllium in the total-
body was ~20 pg, including ~1 pg in the lungs.

(18) Studies on rodents indicate that the systemic distribution of beryllium depends on the
dosage, chemical form, and route of entry (Vacher and Stoner, 1968). The fractions of systemic
beryllium retained in bone and excreted in urine tended to increase with decreasing mass of
administered beryllium. Beryllium accumulated to a large extent in the liver when administered
intravenously as sulfate or chloride but not when administered intravenously as citrate (Van
Cleave and Kaylor, 1953). Following intratracheal administration, the skeleton was the main
repository for all forms of administered beryllium (Cleave and Kaylor, 1955). Following oral
intake of beryllium sulphate by rats, the skeleton contained >75% of the systemic content
(Reeves, 1965).

(19) Scott et al. (1950) examined the effect of added carrier (beryllium sulphate) on the
distribution and excretion of intravenously administered "Be in rabbits and rats. In all cases,
the preponderance of excretion of 'Be over the 7-d observation period was in urine and
occurred during the first 24 h. The cumulative urinary to faecal excretion ratio over 7 d was 2.1
and 6.8 in rats injected with "Be with and without carrier, respectively, and 11 and 14 in rabbits
injected with "Be with and without carrier, respectively. Activity was removed from blood
more rapidly in the animals injected with "Be without carrier than in animals injected with 'Be
with carrier. At 7 d, the animals injected with "Be without carrier showed higher uptake by the
skeleton and greater loss in urine than animals injected with 'Be with carrier. The most
pronounced effect of the added carrier was increased accumulation of activity in the liver.

(20) Vacher and Stoner (1968) studied the disappearance of beryllium from blood in rats
following its injection as carrier-free 'Be or BeSO4 labelled with 'Be. Carrier-free 'Be cleared
rapidly from blood, with only a few percent retained after 2 h. Beryllium cleared much more
slowly from blood when injected as BeSO4 because only a small portion of the injected material
remained in diffusible form. The residence time in blood increased with the mass of injected
BeSOq.

(21) Furchner et al. (1973) compared the biokinetics of "Be (T12 = 53.2 d) in mice, rats,
monkeys, and dogs after oral or parenteral administration, over observation periods up to 380
d. Cumulative urinary plus faecal excretion of 'Be measured over the first week (6 days for
dogs and monkeys) was about 51% of the administered amount for mice, 45% for rats, 55%
for dogs, and 29% for monkeys. Urinary to faecal excretion ratios were 2.9 for mice, 9.7 for
rats, 1.7 for monkeys, and 10.2 for dogs. For each of the four animal types, total-body retention
following intravenous injection could be described as a sum of three exponential terms. The
long-term component of retention represented about 40% of the injected amount for dogs, 46%
for mice, 50% for rats, and 59% for monkeys. Assuming a physical half-life of 52 d for 'Be,
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the investigators derived biological half-times of 1210 d for mice, 890 d for rats, 1270 d for
dogs, and 1770 d for monkeys. The more recently estimated radiological half-life of 53.22 d
for 'Be (ICRP, 2008) would yield higher estimated biological half-times, up to ~3900 d for
monkeys, due to the small difference between the effective long-term half-time in the animals
and the physical half-life of "Be. The systemic distribution of 'Be was determined for rats at
0.25-71 d post intraperitoneal injection. Bone was the dominant repository at all measurement
times, containing about 64% of the retained activity at 1 d, 81% at 10 d, and 93% at 71 d. The
liver contained about 8% of retained "Be at 1 d, 3% at 10 d, and 0.7% at 71 d. The kidneys
contained about 6% at 1 d, 1% at 10 d, and 0.6% at 71 d.

(22) Finch et al. (1990) investigated the behaviour of inhaled "Be in dogs after inhalation
of "BeO particles calcined at either 500° or 1000° C. Faecal excretion was the dominant mode
of excretion at early times after exposure, but urinary excretion dominated at later times. The
distribution of activity in the body was determined at 8, 32, 64, and 180 d post exposure. Lung
retention at 180 d was much higher for BeO calcined at 1000° (62% of ILB) than for BeO
calcined at 500° (14% of ILB). Most of the activity cleared from the lungs but not excreted was
contained in the lymph nodes, skeleton, liver, and blood. On average, the skeleton contained
about 8 times as much activity as the liver.

2.1.3.2. Biokinetic model for systemic beryllium

(23) The biokinetic model for systemic beryllium applied in Publication 151 (ICRP, 2022)
to workers is applied in this report to all age groups. The model structure is shown in Fig. 2.1.
Transfer coefficients are listed in Table 2.2.

(24) The transfer coefficients describing the short- and intermediate-term kinetics of
beryllium were selected to yield reasonable reproductions of the distribution, retention, and
excretion of beryllium observed over the first ~1 y in laboratory animals administered low
masses of soluble forms of Be. The transfer coefficients describing the long-term behaviour
were selected to approximate the long-term distribution of beryllium indicated by autopsy data
for adult humans. The return of beryllium from compartments with extended retention to a
second blood compartment with relatively slow loss was a convenient way to model both the
rapid blood clearance at early times after administration of beryllium to animals and the
relatively large portion of total-body beryllium in blood (an estimated 8%) in environmentally
exposed persons.
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Table 2.2. Age-specific transfer coefficients for beryllium.
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Transfer coefficients (d')

Pathway 100 d ly S5y 10y 15y Adult

Blood 1 UB content  2.00E+01  2.00E+01  2.00E+01  2.00E+01  2.00E+01  2.00E+01
Blood 1 RC content 5.00E+00 5.00E+00 5.00E+00 5.00E+00  5.00E+00  5.00E+00
Blood 1 Trab surface  1.50E+01  1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Blood 1 Cort surface 1.50E+01  1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Blood 1 Liver 1 5.00E+00 5.00E+00 5.00E+00 5.00E+00  5.00E+00  5.00E+00
Blood 1 Kidneys 3.00E+00  3.00E+00  3.00E+00 3.00E+00  3.00E+00  3.00E+00
Blood 1 Other 1 3.00E+01  3.00E+01 3.00E+01 3.00E+01 3.00E+01 3.00E+01
Blood 1 Other 2 5.00E+00 5.00E+00  5.00E+00  5.00E+00  5.00E+00  5.00E+00
Blood 1 Blood 2 2.00E+00  2.00E+00  2.00E+00  2.00E+00  2.00E+00  2.00E+00
Blood 2 Blood 1 1.40E-02  1.40E-02  1.40E-02 1.40E-02  1.40E-02 1.40E-02
Trab surface  Blood 2 2.50E-03  2.50E-03  2.50E-03  2.50E-03  2.50E-03  2.50E-03
Cort surface Blood 2 2.50E-03  2.50E-03  2.50E-03  2.50E-03 2.50E-03  2.50E-03
Liver 1 Blood 1 2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01
Liver 1 Liver 2 5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02
Liver 2 Blood 2 1.90E-03 1.90E-03 1.90E-03 1.90E-03 1.90E-03 1.90E-03
Kidneys Blood 1 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01
Other 1 Blood 1 7.00E-02  7.00E-02  7.00E-02  7.00E-02  7.00E-02  7.00E-02
Other 2 Blood 2 2.50E-04 2.50E-04 2.50E-04 2.50E-04 2.50E-04 2.50E-04

UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.
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417 Dosimetric data for beryllium

418  Table 2.3. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of
419  "Be compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult

Inhaled particulate materials (1 pm AMAD aerosols)

Type F 2.2E-10 1.8E-10 9.8E-11 6.4E-11 4.8E-11 4.9E-11
Type M, default 2.4E-10 2.0E-10 1.2E-10 8.1E-11 6.0E-11 7.0E-11
Type S 3.1E-10 2.6E-10 1.5E-10 1.1E-10 7.8E-11 9.2E-11
Ingested materials

All compounds 8.2E-11 7.4E-11 4.2E-11 3.0E-11 2.1E-11 2.1E-11

420  AMAD, activity median aerodynamic diameter.

421
422  Table 2.4. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
423 '°Be compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 um AMAD aerosols)
Type F 8.1E-08 7.0E-08 3.4E-08 2.2E-08 1.8E-08 1.5E-08
Type M, default 4.5E-08 4.2E-08 2.3E-08 1.5E-08 1.3E-08 1.1E-08
Type S 1.5E-07 1.5E-07 1.2E-07 9.4E-08 9.4E-08 9.6E-08

Ingested materials
All compounds 3.6E-09 2.0E-09 1.1E-09 7.2E-10 5.6E-10 4.4E-10

424  AMAD, activity median aerodynamic diameter.
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3. FLUORINE (Z =9)

3.1. Routes of Intake
3.1.1. Inhalation

(25) For fluorine, default parameter values were adopted for the absorption to blood from
the respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa
values for gas and vapour forms of fluorine are given in Table 3.1 and for particulate forms in
Table 3.2 [both taken from Section 3 of Publication 151 (ICRP, 2022)]. By analogy with the
halogen iodine, considered in detail in Publication 137 (OIR Part 3) (ICRP, 2017), default Type
F is recommended for particulate forms in the absence of specific information on which the
exposure material can be assigned to an absorption type.

(26) For fluorine, and the other halogens, intakes could be in both particulate and gas and
vapour forms, and it is therefore assumed that inhaled fluorine is 50% particulate and 50%
gas/vapour in the absence of information (ICRP, 2002b).

Table 3.1. Deposition and absorption for gas and vapour compounds of fluorine.

Percentage deposited (%) Absorption’
Chemical Absorption from the
form/origin  Total ET; ET, BB bb Al Type  alimentary tract, fa*!
Unspecified 100 0 20 10 20 50 F 1.0

ET,, anterior nasal passage; ET», posterior nasal passage, pharynx and larynx; BB, bronchial; bb, bronchiolar; Al,
alveolar-interstitial.

“Percentage deposited refers to how much of the material in the inhaled air remains in the body after exhalation.
Almost all inhaled gas molecules contact airway surfaces, but usually return to the air unless they dissolve in, or
react with, the surface lining. The default distribution between regions is assumed: 20% ET-, 10% BB, 20% bb,
and 50% Al

It is assumed that the bound state can be neglected for fluorine (i.e. f, = 0).

‘For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied [i.e. the product of f; for the absorption type
(or specific value where given) and the fi value for ingested soluble forms of fluorine (1.0)].

The value of fa= 1.01s applicable to all age-groups.

3.1.2. Ingestion

(27) Absorption of fluoride present in food or as added fluoride in drinking water is rapid
and almost complete. This seems also to be true for most inorganic compounds of fluorine in
solution (see Section 3 of Publication 151). In Publications 30, 72 and 151 (ICRP, 1980, 1995c,
2022), the fractional absorption was taken to be 1 for all compounds of fluorine. In the present
publication, the same value fa =1 is used for all chemical forms of fluorine and for all ages.
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Table 3.2. Absorption parameter values for inhaled and ingested fluorine.

Absorption parameter values”

Inhaled particulate materials fe s (dh ss (d7h
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All forms 1 1 1 1 1 1

“It is assumed that the bound state can be neglected for fluorine (i.e. f, = 0). The values of s, for Type F, M and S
forms of fluorine (30, 3 and 3 d~! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of fluorine applicable to the age-group of interest (1).

Default Type F is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (fa = 1).

3.1.3. Systemic distribution, retention and excretion of fluorine
3.1.3.1. Biokinetic data

(28) Fluorine-18 is widely used in skeletal imaging. Its systemic behaviour has been
studied in human subjects and laboratory animals, usually as the fluoride ion (Suttie and
Phillips, 1959; Costeas et al., 1970; Wootton, 1974; Hall et al., 1977; Charkes et al., 1978;
Hawkins et al., 1992; Whitford, 1994; Schiepers et al., 1997).

(29) Fluoride entering blood deposits primarily in bone. Uptake by bone is rapid and
thought to occur mainly by adsorption onto hydroxyapatite crystals, followed by exchange with
hydroxyl groups in the hydroxyapatite. Uptake by bone is correlated with calcium influx and
hence varies with age, with higher deposition in immature than mature bone. The highest
concentrations of fluoride in bone occur at sites of bone growth or remodelling (Neuman and
Neuman, 1958; Whitford, 1994; Schiepers et al., 1997).

(30) Charkes et al. (1978) developed a biokinetic model for systemic fluoride (Fig. 3.1)
based on collected results of published studies of the kinetics of '¥F in human subjects. Two
compartments were used to describe the behaviour of fluoride in bone: a buffer compartment
between blood and mineral bone, assumed to represent an extracellular fluid space of bone, and
a compartment representing mineral bone. A portion of fluoride entering the buffer pool was
assumed to return rapidly to blood. The remainder was assumed to enter a mineral bone
compartment that returns fluoride to the buffer pool.

3.1.3.2. Biokinetics of systemic fluorine

(31) The biokinetic model for fluorine applied to workers in Publication 151 (ICRP, 2022)
is a modified version of the model of Charkes et al. (1978) for shown in Fig. 3.1. The model of
Publication 151 incorporates flow rates derived by Charkes and coworkers but applies these
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rates within a modified model framework. Specifically, the compartment called Bone ECF in
Fig. 3.1 was divided into compartments called Trabecular Surface 1 (T1) and Cortical Surface
1 (Cl1), and the compartment called Bone was divided into compartments called Trabecular
Surface 2 (T2) and Cortical Surface 2 (C2). The compartment called “Tubular urine” in Fig.
3.1 was replaced by a compartment named “Kidneys”. The ratio of flow rates from Blood to
T1 and C1 was assumed to be the same as the trabecular to cortical deposition ratio applied in
the model for calcium in Publication 134 (ICRP, 2016). The sum of flow rates from Blood to
T1 and C1 was required to be the same as the flow rate from Blood to Bone ECF in Fig. 3.1.

(32) The fluorine model applied to workers in Publication 151 is applied in this report to
adult members of the public. For application to pre-adult ages, the rates of transfer from Blood
to T1 and C1 are assumed to be proportional to rates of transfer of calcium from blood to
trabecular and cortical bone surfaces, respectively, indicated in the age-specific model for
calcium applied in Part 1 of the present series of reports.

(33) The structure of the fluorine model applied in the present report is shown in Fig. 3.2.
Transfer coefficients are listed in Table 3.2.

Non-bone
ECF
1.191 0.567
0.246 0.602
Blood Bone ECF Bone
0.908 0.02
0.388 0.024
Tubular
urine

lo.mz

Loss in urine

Fig. 3.1. Biokinetic model of Charkes et al. (1978) for systemic fluoride. Numbers next to
arrows are transfer coefficients (min'). ECF, extracellular fluids.

Other
T l b Bone | !
! 1
: Trabecular Trabecular :
! surface 1 surface 2 |,
Blood | !
1 Cortical Cortical !
. surface 1 surface 2 | |
T l = | s
Kidneys
Urinary
bladder

Fig. 3.2. Structure of the biokinetic model for systemic fluoride used in this report. Transfer
coefficients are listed in Table 3.2.
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Table 3.2. Age-specific transfer coefficients for fluorine.

Transfer coefficients (d™!)

Pathway 100d ly S5y 10y 15y Adult
Blood Trab surface 1  2.13E+02 1.28E+02 1.26E+02 2.01E+02 2.93E+02 1.97E+02
Blood Cortsurface 1 ~ 8.52E+02 5.11E+02 4.42E+02 5.94E+02 7.57E+02 1.58E+02
Blood Other 1.02E+03  1.44E+03 1.51E+03 1.29E+03 1.04E+03 1.72E+03
Blood Kidneys 2.06E+01 2.90E+01 3.04E+01 2.59E+01 2.09E+01 3.46E+01
Trab surface I  Blood 1.31E+03 1.31E+03 1.31E+03 1.31E+03 1.31E+03 1.31E+03
Cort surface 1|  Blood 1.31E+03 1.31E+03 1.31E+03 1.31E+03 1.31E+03 1.31E+03
Trab surface 1  Trab surface2  8.67E+02 8.67E+02 8.67E+02 8.67E+02 8.67E+02 8.67E+02
Cort surface 1 ~ Cort surface 2 8.67E+02  8.67E+02 8.67E+02 8.67E+02 8.67E+02 8.67E+02
Trab surface 2  Trab surface 1 2.88E+01 2.88E+01 2.88E+01 2.88E+01 2.88E+01 2.88E+01
Cort surface 2 Cort surface 1  2.88E+01 2.88E+01 2.88E+01 2.88E+01 2.88E+01 2.88E+01
Other Blood 8.17E+02 8.17E+02 8.17E+02 8.17E+02 8.17E+02 8.17E+02
Kidneys Blood 5.59E+02 5.59E+02 5.59E+02 5.59E+02 5.59E+02 5.59E+02
Kidneys UB content 8.81E+02 8.81E+02 8.81E+02 8.81E+02 8.81E+02 8.81E+02
518  UB, urinary bladder; Cort, cortical; Trab, trabecular.
519  3.2. Dosimetric data for fluorine
520  Table 3.3. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of
521  '8F compounds.
Effective dose coefficients (Sv Bq™!)
Inhaled gases or vapours 3m ly Sy 10y 15y Adult
Unspecified 3.4E-10 2.6E-10 1.6E-10 1.1E-10 8.2E-11 7.8E-11
Inhaled particulate materials (1 pm AMAD aerosols)
Type F, default 1.4E-10 1.0E-10 4.7E-11 3.4E-11 2.3E-11 2.0E-11
Type M 2.0E-10 1.5E-10 7.6E-11 5.6E-11 4.3E-11 3.6E-11
Type S 2.0E-10 1.5E-10 7.7E-11 5.7E-11 4.4E-11 3.7E-11
Ingested materials
All compounds 2.6E-10 2.0E-10 1.3E-10 8.9E-11 6.1E-11 4.8E-11
522  AMAD, activity median aerodynamic diameter.
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4. SODIUM (Z=11)
4.1. Routes of Intake
4.1.1. Inhalation
(34) For sodium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of sodium are given in Table 4.1 [taken from Section 4 of Publication 151

(ICRP, 2022)].

Table 4.1. Absorption parameter values for inhaled and ingested sodium.

Absorption parameter values”

Inhaled particulate materials f s (d7) ss (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year S years 10 years 15 years adult
All compounds 1 1 1 1 1 1

“It is assumed that the bound state can be neglected for sodium (i.e. f, = 0). The values of s, for Type F, M and S
forms of sodium (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of sodium applicable to the age-group of interest (1).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract.

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (fo = 1).

4.1.2. Ingestion

(35) Virtually all sodium is absorbed from the gastrointestinal tract of man [see Publication
151 (ICRP, 2022)]. The fractional absorption was therefore taken to be 1 in Publications 30,
72 and 151 (ICRP, 1980, 1995¢, 2022). The same value of fa = 1 is adopted here for sodium
intake from diet at all ages.

4.1.3. Systemic distribution, retention and excretion of sodium
4.1.3.1. Biokinetic data

(36) The human body’s sodium is freely exchangeable with the extracellular fluids except
for a portion of sodium in bone representing roughly 10% of total-body sodium in an adult
(Mole, 1984). The turnover rate of the body’s exchangeable sodium is inversely related to the
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level of sodium in diet. The concentration of sodium in the adult body typically is about 1 g Na
per kg (Mole, 1984)

(37) Richmond (1980) studied the biokinetics of ?2Na over time periods up to ~9 months
after its oral administration to mice, rats, and human subjects; intraperitoneal (IP)
administration to mice and rats; and intravenous (IV) administration to monkeys and dogs.
Average biological retention of Na (%) in three human subjects was described as a sum of three
exponential terms:

R(t) = 48.8e700815t 4 57,0~ 00513 4 0,267~ 00015 (4.1)

where ¢ is in days.

(38) Total-body retention in dogs and monkeys resembled that in human subjects. Activity
was removed from the body at a moderately higher rate in rats and a much higher rate in mice
than in human subjects. Distribution studies on rats indicated that muscle, bone, skin,
gastrointestinal tract, and blood plasma contained the preponderance of the retained activity 1-
20 d after intraperitoneal administration. Blood plasma contained ~10% and bone contained
17-31% of total-body activity during this period.

(39) Richmond et al. (1962) examined the effect of age on long-term retention of
intravenously injected 2>Na in rats. Animals of age 30 d (immature rats) and 86 d (adult rats)
at injection were used. Animals were divided into groups with normal or low levels of sodium
in diet. Total-body retention was measured for 173 days. Biological retention of activity in all
groups was expressed as a sum of three exponential terms. In animals with normal levels of
sodium in diet, biological retention of the tracer was higher in the adults than in the younger
animals for ~35 d post injection but lower thereafter. The coefficient (size) of the long-term
component of retention was about 50% greater for the younger animals than for the adults.
Similar long-term effects of age were seen in animals with low sodium intake; i.e., the size of
the long-term component was about 50% greater in the younger animals than in the older
animals. In all groups, the long-term biological half-time was about 9 months.

(40) Vennart (1963) reported a long-term component of sodium retention in the human
body of about 1100 d, representing about 0.3% of the administered amount. At 6-11 mo after
oral administration of >*Na to 12 patients, median total-body retention represented ~0.35% of
the administered amount (Smilay et al., 1961). In other human studies, Veall et al. (1955)
estimated **Na retention of 1% after 75 d, and Miller et al. (1957) estimated *’Na retention of
0.1% at 1y.

(41) Bergstrom (1955) studied the sodium loss from bone in rats due to various procedures
resulting in acute acidosis or sodium depletion. Only about 29% of bone sodium could be
mobilized.

(42) Forbes and McCoord (1969) studied the behaviour of sodium in bone for periods up
to 650 d post intraperitoneal injection of **Na into rats. Most of the activity taken up by bone
was removed with a half-time of a few days, but about 5% of the deposited activity exhibited
slow removal with an estimated half-time of ~700 d. The investigators concluded that the
tenaciously retained activity had become an integral part of the bone crystal structure.

4.2.3.2. Biokinetic model for systemic sodium

(43) A biokinetic model proposed by Samuels and Leggett (2021) for systemic sodium in
adults was adopted in Publication 151 (ICRP, 2022) for application to workers. That model is
applied in this report to adult members of the public. The model structure (Fig. 4.1) divides
systemic sodium into blood, an exchangeable sodium pool consisting of sodium in all soft
tissues, an exchangeable pool in bone represented by cortical and trabecular bone surfaces, and
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a relatively non-exchangeable pool in bone represented by cortical and trabecular bone volume.
Transfer coefficients for adults were set for consistency of model predictions with the following
observations or assumptions: observed long-term total-body retention of radio-sodium in
healthy human subjects; central rates of sodium excretion via urine, sweat, and faeces based on
literature review; equilibrium between blood and soft tissues by 1 h after IV injection of a
sodium tracer; equilibrium between blood and bone surfaces by 1.5 h after IV injection of a
sodium tracer; a steady-state distribution of sodium of about 13% in blood, 40% in bone, and
the remainder in soft tissues; reasonably accurate reproduction of total-body sodium in adults
using model input of typical daily intake of sodium by an adult.

Other Sweat

Cortical Cortical
volume surface

Blood

I
<
L)
|
Trabecular Trabeculare;_
B

volume [ surface Colon
| content
| B e s i e s s \l/
Urinary
Urine bladder <« Faeces
content

Fig. 4.1. Structure of the biokinetic model for systemic sodium.

(44) Extension of the model for sodium applied in Publication 151 to preadult ages was
based on the following general assumptions, or guiding principles, regarding sodium kinetics
at any given age: daily excretion of sodium is equal to daily intake (homeostatic equilibrium);
the total-body concentration of sodium is about 1 g kg™! at all ages; the distribution of sodium
among blood and exchangeable pools of the body is nearly the same at all ages; the rate of
transfer of sodium into the virtually nonexchangeable portion of bone is greater for immature
bone than for mature bone; and removal of sodium from a nonexchangeable compartment of
bone is a sum of the bone turnover rate, T, and a slow, age-invariant rate of transfer, R, from
bone to blood due to other causes. The following specific assumptions were used to develop
transfer coefficients for preadult ages consistent with these guiding principles. Total-body
masses at the ages addressed in the model (100d, 1y, 5y, 10y, 15y, and adult) were taken
from Publication 89 (ICRP, 2002). Dietary intake of sodium was based on results of extensive
surveys of age-specific dietary sodium in the US since the 1990s (National Health and Nutrition
Examination Survey, or NHANES) (Alaimo et al., 1994; Tian et al., 2013; Wallace et al., 2019),
and a review by Powles et al. (2013) of reported worldwide data for adults from 142 surveys
of urinary sodium and 103 surveys of dietary sodium between 1980 and 2010 in 66 countries.
The central values determined by Powles et al. for male and female adults are reasonably
consistent with those determined for the US in NHANES studies. The following estimated
sodium intakes in males of different ages were used to estimate sodium excretion rates: 0.6,
2.0,2.7,3.1,4.0,and 4.1 gd™! for ages 100d, 1y, 5y, 10y, 15y, and adult, respectively. For
pre-adult age P, the transfer coefficient from blood to each excretion pathway was scaled from
the rate for adults using the scaling factor F=(Ip/Mp/)/(1a/Ma), where Mp and Ip are total-body
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mass and daily sodium intake, respectively, at the pre-adult age; and Ma and Ia are
corresponding values for an adult male. The derived scaling factors are 1.8, 3.6, 2.5, 1.7, and
1.3 forages 100d, 1y, 5y, 10y, and 15y, respectively. The transfer coefficients between blood
and exchangeable soft tissue or bone pools were not changed from the values applied to adults
in Publication 151 (ICRP, 2022). The rate of transfer from bone surface compartments
(representing the sodium-exchangeable portion of bone) to bone volume compartments
(representing the nonexchangeable portion of bone) was set at 1.5 times the value for adults for
ages 5-15 y and 2.0 times the value for adults for ages 100 d and 1 y. In the model for adults
used in Publication 151, the transfer rate from a bone volume compartment to blood was set at
0.002 d’!, based on a curve fit to long-term 2*Na retention data for healthy adult males. This
rate is greater than the bone turnover rates in adult bones and for a given bone type presumably
represents the sum of the bone turnover rate T and return of sodium to blood at a rate R due to
other causes. For development of transfer rates from nonexchangeable bone to blood in
preadults, the value R was assumed to be invariant with age as its nature is unknown, but
reference age-specific turnover rates T for cortical and trabecular bone (ICRP, 2002) were
applied. The result is that the assigned transfer coefficients from nonexchangeable bone pools
to blood increase with decreasing age.
(45) The age-specific transfer coefficients for systemic sodium are listed in Table 4.2.

Table 4.2. Age-specific transfer coefficients for sodium

Transfer coefficients (d')

Pathway 100 d ly S5y 10y 15y Adult

Blood UB-cont 7.95E-01 1.59E+00 1.10E+00 7.51E-01  5.74E-01  4.42E-01
Blood RC-cont 8.46E-03 1.69E-02  1.18E-02  7.99E-03  6.11E-03  4.70E-03
Blood Excreta” 423E-02 8.46E-02 5.88E-02 4.00E-02  3.06E-02  2.35E-02
Blood Other 9.50E+01  9.50E+01 9.50E+01  9.50E+01  9.50E+01  9.50E+01
Blood Trab surface  1.00E+00 1.00E+00 1.00E+00  1.00E+00  1.00E+00  1.00E+00
Blood Cort surface  4.00E+00 4.00E+00 4.00E+00 4.00E+00  4.00E+00  4.00E+00
Other Blood 2.50E+01  2.50E+01 2.50E+01 2.50E+01 2.50E+01  2.50E+01
Trab surface  Blood 2.00E+00  2.00E+00  2.00E+00 2.00E+00 2.00E+00 2.00E+00
Trab surface  Trab volume  1.10E-03 1.10E-03  8.25E-04  8.25E-04 8.25E-04  5.50E-04
Cort surface  Blood 2.00E+00  2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00
Cort surface  Cort volume  1.10E-03 1.10E-03  8.25E-04  8.25E-04 8.25E-04  5.50E-04
Trab volume  Blood 9.73E-03  4.39E-03  3.32E-03  2.83E-03 247E-03  2.00E-03
Cort volume  Blood 1.01E-02  4.80E-03  3.45E-03 2.82E-03  2.44E-03  2.00E-03

UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.

*Sweat.
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659 Dosimetric data for sodium

660  Table 4.3. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of
661  *Na compounds.

Effective dose coefficients (Sv Bq™!)

3m ly Sy 10y 15y Adult

Inhaled particulate materials (1 pm AMAD aerosols)

Type F 6.5E-09 2.5E-09 1.7E-09 1.5E-09 1.3E-09 1.5E-09
Type M, default 3.1E-08 2.7E-08 1.6E-08 1.1E-08 8.4E-09 9.3E-09
Type S 1.1E-07 1.0E-07 6.7E-08 4.6E-08 4.0E-08 4.4E-08
Ingested materials

All compounds 1.2E-08 4.6E-09 3.6E-09 3.3E-09 3.0E-09 3.5E-09

662  AMAD, activity median aerodynamic diameter.

663
664  Table 4.4. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
665  2*Na compounds.

Effective dose coefficients (Sv Bq!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 um AMAD aerosols)
Type F 1.6E-09 1.0E-09 4.8E-10 3.4E-10 2.1E-10 1.8E-10
Type M, default 2.2E-09 1.6E-09 8.1E-10 5.8E-10 3.9E-10 3.7E-10
Type S 2.3E-09 1.7E-09 8.7E-10 6.3E-10 4.2E-10 4.0E-10

Ingested materials
All compounds 2.9E-09 1.9E-09 1.2E-09 8.0E-10 5.6E-10 4.8E-10

666  AMAD, activity median aerodynamic diameter.
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5. MAGNESIUM (Z =12)
5.1. Routes of Intake
5.1.1. Inhalation
(46) For magnesium, default parameter values were adopted on absorption to blood from
the respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa
values for particulate forms of magnesium are given in Table 5.1 [taken from Section 5 of

Publication 151 (ICRP, 2022)].

Table 5.1. Absorption parameter values for inhaled and ingested magnesium.

Absorption parameter values”

Inhaled particulate materials f s (d7h) 55 (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x10*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year S years 10 years 15 years adult
Magnesium oxide 0.4 0.2 0.2 0.2 0.2 0.2
All other forms 1 0.5 0.5 0.5 0.5 0.5

“It is assumed that the bound state can be neglected for magnesium (i.e. fi, = 0). The values of s, for Type F, M
and S forms of magnesium (30, 3 and 3 d™' respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of magnesium applicable to the age-group of interest (e.g. 0.5 for
adults).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fj for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.5 for adults).

5.1.2. Ingestion
5.1.2.1. Adults

(47) Estimates of the fractional intestinal absorption of magnesium were reported from 10
to 70%. This absorption seems to be lower for the oxide than for soluble forms and to be
influenced by the total amount of magnesium in diet. For details, see Section 5 of Publication
151 (ICRP, 2022).

(48) In Publications 30 and 72 (ICRP, 1981, 1995c), fi was taken to be 0.5 for all
compounds of magnesium. In Publication 151 (ICRP, 2022), a lower fa = 0.2 was applied to
magnesium oxide. In this publication, the same fa = 0.2 is used for intakes of magnesium oxide
by adults, while fa = 0.5 is applied to all other chemicals forms, including magnesium in diet.
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5.1.2.2. Children

(49) The United States Institute of Medicine (IOM, 1997) noted that there are no data
indicating that serum magnesium concentration is increased during pregnancy. The
bioavailability of magnesium was observed to be negatively correlated with age in adult men
(Verhas et al., 2002) and rats (Coudray et al., 2006); however, magnesium balance does not
seem to be affected by age in adults (Hunt and Johnson, 2006).

(50) Consistently with the approach of Publication 56 (ICRP, 1990), an fa = 0.4 is adopted
here for intakes of magnesium oxide by 3 month old infants and the value of fo = 0.2 is applied
to intakes of magnesium oxide by older children. For all other forms an fa = 1 is used for intakes
by 3-month-old infants and the value of fao = 0.5 is applied to older children.

5.1.3. Systemic distribution, retention and excretion of magnesium
5.1.3.1. Biokinetic data

(51) The adult human body typically contains ~24 g of the essential element magnesium.
The normal concentration in plasma is 0.75-1.0 mmol Mg L™!. The concentration in red blood
cells (RBC) is about three times that in plasma. Bone contains about 60% of the total-body
content. Part of bone magnesium exchanges extremely slowly with plasma magnesium.
Magnesium residing on bone surfaces is readily released to blood when plasma concentrations
decline but remains bound to bone surface at adequate plasma concentrations (Elin, 1987;
Vormann, 2003).

(52) In healthy adult human subjects injected intravenously with Mg, mean urinary and
faecal excretion accounted for about 17% and 2.6%, respectively, of the administered amount
(corrected for radioactive decay) after 6 d (Aviola and Berman, 1966). Exchangeable
magnesium presumably consisting mainly of extracellular fluid was estimated to represent
about 15% of total-body magnesium. A larger pool of the tracer exchanged with stable
magnesium with a biological half-life of ~42 d.

(53) In healthy adult human subjects ~20% of intravenously administered Mg (Tbi/> =
20.9 h) was removed in urine over 24 h (Aikawa et al., 1960). Faecal excretion was negligible.
Exchangeable magnesium was estimated to represent less than 16% of total-body magnesium.
Activity exchanged slowly with stable magnesium in bone, muscle, and RBC.

(54) Watson et al. (1979) studied magnesium kinetics in the whole body, plasma, and RBC
in five healthy adult male humans following intravenous administration of 2*Mg. Exchangeable
magnesium was estimated to represent less than one-fourth of total-body magnesium after 5 d.
Total-body retention over the relatively short observation period was described as a sum of two
exponential terms, with ~4.5% removed with a biological half-time of a few hours and the
remainder with a half-time of ~30 d.

(55) Sabatier et al. (2003) developed a compartmental model of magnesium metabolism
based on results of a stable isotope study involving oral administration of Mg and intravenous
administration of Mg to six healthy adult men in the age range 26-41 y. Isotopic
concentrations were determined in blood, urine, and faeces collected over 12 d. The use of
stable isotopes enabled longer observation of exchange of magnesium tracers with the body’s
magnesium stores and identification of a larger exchangeable pool than estimated in an earlier
study by Aviola and Berman (1966) involving the relatively short-lived radionuclide 2Mg. The
exchangeable pool was interpreted as representing 25% of total-body magnesium and
consisting of two extra-plasma pools that exchange magnesium with plasma and contain 80%
and 20% of exchangeable magnesium. The model also described exchange of systemic
magnesium with the gastrointestinal (GI) tract resulting from secretion of magnesium into the
GI content and reabsorption to blood. Excretion of magnesium was depicted as transfer from
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plasma to urine and faecal loss of unabsorbed magnesium. The model did not address non-
exchangeable magnesium.

(56) At 1 d after intravenous administration of 2Mg to dogs, the heart showed the highest
activity, followed by kidney, liver, and pancreas, among eight examined soft tissues (Brandt et
al., 1958). The activity concentration in bone varied greatly from one bone to another and
generally was lower than that in heart, kidneys, liver, and pancreas.

(57) Lazzara et al. (1963) performed a detailed examination of the time-dependent
behaviour of 2®Mg in dogs over the first 68 h after intravenous administration. There were
considerable differences in the rate of exchange of Mg with stable magnesium in different
tissues. The activity concentration in the kidneys rose rapidly, peaked at about 4 h, and then
gradually declined. The left ventricle, liver, and pancreas initially showed similar **Mg uptake
curves, but peak concentrations occurred at different times for the three organs. There was a
continual rise in activity in the cerebellum throughout the observation period. Bone and teeth
showed highly variable activity concentrations from one location to another, and neither
reached a peak average concentration over the 68-h observation period. The biological half-
time for the total body was about 11 d.

5.1.3.2. Biokinetic model for systemic magnesium

(58) The biokinetic model for systemic magnesium applied to workers in Publication 151
(2022) is applied in this report to intakes at any age. The model is an extension of the model of
Sabatier et al. (2003) summarized above. The median transfer coefficients derived by Sabatier
and coworkers were used as a starting point. Their extra-plasma compartment with relatively
slow return to blood was assumed to represent exchangeable magnesium in bone.
Compartments representing longer retention in bone were added. A soft-tissue compartment
was added to represent slowly exchangeable magnesium and to approximate the total-body
stable magnesium content of adult humans. Model predictions are reasonably consistent with
the bone and soft tissue magnesium contents in adult humans (about 55-60% in bone), central
urinary and faecal excretion rates reported for magnesium reported in the literature, and buildup
of the magnesium ratio RBC:Plasma as observed by Watson et al (1979) in normal male
subjects.

(59) The structure of the biokinetic model for systemic magnesium used in this report is
shown in Fig. 5.1. Transfer coefficients are listed in Table 5.2.
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777
778  Fig. 5.1. Structure of the biokinetic model for systemic magnesium. RBC, red blood cells; SI,

779  small intestine.
780
781  Table 5.2. Age-specific transfer coefficients for magnesium.
Transfer coefficients (d™!)

Pathway 100 d ly Sy 10y 15y Adult
Plasma RBC 5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02
Plasma UB content 1.00E+00  1.00E+00  1.00E+00  1.00E+00  1.00E+00  1.00E+00
Plasma SI content 2.00E-01  2.00E-01  2.00E-01  2.00E-01  2.00E-01  2.00E-01
Plasma Trab surface ~ 4.00E+00  4.00E+00 4.00E+00 4.00E+00 4.00E+00  4.00E+00
Plasma Cort surface  4.00E+00  4.00E+00 4.00E+00  4.00E+00 4.00E+00  4.00E+00
Plasma Other 1 7.00E+01  7.00E+01  7.00E+01  7.00E+01  7.00E+01  7.00E+01
Plasma Other 2 1.98E+01  1.98E+01  1.98E+01 1.98E+01 1.98E+01  1.98E+01
Plasma Other 3 1.00E+00  1.00E+00  1.00E+00  1.00E+00  1.00E+00  1.00E+00
RBC Plasma 3.00E-02  3.00E-02  3.00E-02  3.00E-02  3.00E-02  3.00E-02
Trab surface  Plasma 1.80E-01  1.80E-01  1.80E-01  1.80E-01  1.80E-01  1.80E-01
Trab surface  Trab volume  2.00E-02  2.00E-02  2.00E-02  2.00E-02  2.00E-02  2.00E-02
Cort surface  Plasma 1.80E-01  1.80E-01  1.80E-01  1.80E-01  1.80E-01  1.80E-01
Cort surface  Cort volume  2.00E-02  2.00E-02  2.00E-02  2.00E-02  2.00E-02  2.00E-02
Other 1 Plasma 6.00E+01  6.00E+01  6.00E+01  6.00E+01  6.00E+01  6.00E+01
Other 2 Plasma 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00  3.00E-+00
Other 3 Plasma 2.30E-02  2.30E-02  2.30E-02 2.30E-02 2.30E-02  2.30E-02
Trab volume  Plasma 2.30E-02  2.30E-02  2.30E-02 230E-02 2.30E-02  2.30E-02
Cort volume  Plasma 2.30E-02  2.30E-02  2.30E-02 2.30E-02 2.30E-02  2.30E-02

782 RBC, red blood cells; SI, small intestine; Trab, trabecular; Cort, cortical.
783  5.1.3.3. Treatment of radioactive progeny

784 (60) The treatment of radioactive progeny produced in systemic compartments after intake
785  of a radioisotope of magnesium is described in Section 5.2.3.3. of Publication 151 (ICRP,
786  2020).
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Dosimetric data for magnesium

787

788  Table 5.3. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of
789 Mg compounds.

Effective dose coefficients (Sv Bq™!)

3m ly Sy 10y 15y Adult

Inhaled particulate materials (1 pm AMAD aerosols)

Type F 3.8E-09 2.6E-09 1.1E-09 7.2E-10 4.7E-10 3.5E-10
Type M, default 4.8E-09 3.5E-09 1.8E-09 1.2E-09 8.5E-10 7.7E-10
Type S 4.9E-09 3.7E-09 1.9E-09 1.3E-09 9.1E-10 8.4E-10
Ingested materials

Magnesium oxide 6.1E-09 4.6E-09 2.7E-09 1.8E-09 1.3E-09 1.1E-09
All other forms, 7.0E-09 4.8E-09 2.7E-09 1.8E-09 1.2E-09 1.0E-09

unspecified forms
790  AMAD, activity median aerodynamic diameter.
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6. ALUMINIUM (Z = 13)

6.1. Routes of Intake
6.1.1. Inhalation

(61) There is extensive information available on the behaviour of aluminium after
deposition in the respiratory tract from animal experiments (mainly in rats), in-vitro dissolution
studies, and some accidental human intakes. For details see Section 6 of Publication 151 (ICRP,
2022). Absorption parameter values and Types, and associated fa values for particulate forms
of aluminium are given in Fel! Hittar inte referenskilla.6.1 [taken from Section 6 of
Publication 151 (ICRP, 2022)].

Table 6.1. Absorption parameter values for inhaled and ingested aluminium.

Absorption parameter values”

Inhaled particulate materials £ s (d7) ss (d7)
Default parameter values’™

Absorption Type Assigned forms

F - 1 30 -
M aluminium metal 0.2 3 0.005
St aluminium oxide, fluoride, 0.01 3 0.0001

bauxite ore, chlorhydrate,
sulphate, all unspecified forms

Ingested materials”

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year S years 10 years 15 years adult
Soluble forms and 0.03 0.003 0.003 0.003 0.003 0.003
aluminium in diet

Insoluble forms 0.001 0.0001 0.0001 0.0001 0.0001 0.0001

*It is assumed that the bound state can be neglected for aluminium (i.e. , = 0.0). The values of s, for Type F, M
and S forms of aluminium (30, 3 and 3 d~! respectively) are the general default values.

"Materials (e.g. oxide) are generally listed here where there is sufficient information to assign to a default
absorption type, but not to give specific parameter values [see Section 6.2.1 of Publication 151 (ICRP, 2022)].
‘For inhaled material deposited in the respiratory tract and subsequent cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of aluminium applicable to the age-group of interest (e.g. 0.003 for
adults).

SDefault Type S is recommended for use in the absence of specific information (i.e. if the form is unknown, or if
the form is known but there is no information available on the absorption of that form from the respiratory tract).
TActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.003 for adults).

6.1.2. Ingestion
6.1.2.1. Adults

(62) A fractional absorption value of 0.01 was recommended in Publications 30 and 72
(ICRP, 1981, 1995c¢) for all compounds of aluminium. Based on more recent data, a fa value
of 0.003 was adopted for soluble forms at the workplace in Publication 151 while a value of 1
x 10"* was adopted for insoluble forms (ICRP, 2022).
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(63) Aluminium absorption from the diet was estimated to be 0.1 to 0.3% based on normal
urinary aluminium excretion of 20 to 50 pg d”!' and a daily aluminium intake of 20 mg (Ganrot,
1986). From updated estimates of typical daily intake and daily urinary excretion, Priest (1993)
and Nieboer et al. (1995) evaluated fractional absorption in the order of 0.1%. Based on a daily
intake of 10 mg and aluminium body burdens of 5 and 60 mg, Priest (2004) estimated fractional
absorptions of 0.14 and 1.6%. Greger and Baier (1983) conducted a 40-day balance study on 8
adult males: measurement of urinary and faecal excretion indicated gastro-intestinal absorption
of 0.78% of aluminium intake over 20 days. This was reduced to 0.09% when excess
aluminium lactate was added to the diet for 20 days. The urinary aluminium excretion after
consumption of two litres of tea by one subject suggested fractional absorption of 0.3% (Powell
et al., 1993). Stauber et al. (1999) investigated the relative absorption of aluminium naturally
present in food and drinking water: 0.3 to 0.4% of aluminium was absorbed from both water
and food by 29 healthy volunteers. Stauber et al. corrected the estimate of absorption for non-
measured aluminium excretion and body retention, thus likely providing a more realistic
estimate than other studies.

(64) The simultaneous ingestion of citric acid or orange juice increased the gastrointestinal
absorption of aluminium by a factor of up to 50 (Weberg and Berstad, 1986). Day et al. (1991)
measured the plasma concentration of aluminium 26 days after ingestion of the citrate and
estimated a fractional absorption of at least 1%. By measuring plasma levels of aluminium in
5 volunteers after ingestion of aluminium in citrate-rich orange juice, Edwardson et al. (1993)
estimated a gastrointestinal absorption of about 0.015% of ingested aluminium. This was
reduced by a factor of about 7 in the presence of dissolved silicon. Priest et al. (1996) assessed
50-time higher aluminium absorption from the citrate than from the hydroxide. The co-
administration of citrate increased aluminium absorption from aluminium hydroxide by a factor
of about 13. Moore et al. (1997) reported an increased absorption of 0.14% 2°Al and ?’Al
ingested in the presence of citrate by 15 patients with Down’s syndrome as compared to 0.02
—0.03% in 15 control subjects.

(65) An fa value 0of 0.003 is adopted in this publication for soluble forms and for aluminium
in diet ingested by adult members of the public. The value of 1 x 10 is used for insoluble
forms.

6.1.2.2. Children

(66) Yokel and McNamara (1985) did not find any age-related differences in the systemic
clearance or half-time of aluminium lactate in rabbits following intravenous, oral, or
subcutaneous exposure. Oral exposure to aluminium nitrate resulted in higher brain aluminium
levels in young rats as compared to older rats, but there was no difference in toxicity between
young and adult rats (Gomez et al. 1997a). In other tissues examined, the aluminium levels in
the young rats tended to be lower than in the adult or older animals (Gomez et al. 1997b).

(67) Consistently with the approach of Publication 56 (ICRP, 1990), an fa = 0,03 is adopted
here for ingestion of soluble forms and of aluminium in diet by 3 month old infants ; an fa =
0,001 is used for ingestion of insoluble forms by 3 month old infant. For children of older ages,
the same values as for adults (fa = 0,003 for soluble forms and for aluminium in diet, fo = 1 x
10 for insoluble forms) are used.

6.1.3. Systemic distribution, retention and excretion of aluminium
6.1.3.1. Biokinetic data

(68) Following absorption into blood, most of the circulating aluminium binds to the iron-
transport protein transferrin, but an estimated 15-20% forms small-molecule complexes that
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may be readily excreted (Devoto and Yokel, 1994). Over 90% of endogenous excretion of
aluminium is in urine. Post-mortem measurements of aluminium in tissues of adult males
indicate a total-body content of ~0.2 g, with bone accounting for about 30% as a central
estimate (Zhu et al., 2010). These values are reasonably consistent with conclusions of Skalsky
et al. (1983), who estimated a total body content of ~0.3 g with about 40% in bone based on a
review of the literature.

(69) Priest et al. (1995) studied the biokinetics of 2°Al (T12 = 7.2 x 10° y) administered
intravenously as citrate to a healthy adult male. Less than 1% of the administered amount
remained in blood after 2 d. Cumulative urinary and faecal excretion accounted for 83% and
1.8%, respectively, of the injected amount after 13 d. Total-body retention declined to ~4% by
1178 d. The investigators estimated a long-term biological half-time of 7 y.

(70) Talbot et al. (1995) investigated the kinetics of 2°Al in six healthy adult males over 5-
6 d after intravenous administration as citrate. The concentration in blood was in the range 3.3-
13% of injected 2°Al L! blood at 1 h and 0.093-0.73% L at 1 d. Mean cumulative urinary °Al
represented 59% (46-74%) of injected activity at 1 d and 72% (62-83%) at 5 d. Faecal excretion
accounted for about 1% of injected 2°Al over the first 5 d. Mean total-body retention at 5 d
represented 27% (16-36%) of administered activity.

(71) Important systemic repositories of aluminium identified in animal studies include
bone, liver, and kidneys (Berlyne et al., 1972; Zafar et al., 1997; Wu et al., 2012). The brain
shows a low rate of uptake of aluminium but a relatively long retention time (Y okel, 2002).

6.1.3.2. Biokinetic model for systemic aluminium

(72) The biokinetic model for aluminium applied in Publication 151 (ICRP, 2022) to
workers 1s applied here to adult members of the public. The transfer coefficients were set
primarily for consistency of model predictions with two data sets: blood clearance, urinary and
faecal excretion rates, and total-body retention of intravenously administered 2°Al in human
subjects (Priest et al., 1995; Talbot et al., 1995), and the distribution of aluminium in adult
males as indicated by autopsy data (Skalsky et al., 1983; Zhu et al., 2010). Transfer coefficients
for the adult are assigned to pre-adult ages except that the ICRP’s generic age-specific transfer
coefficients are applied to activity transferring from bone surface to bone volume or blood and
from bone volume to blood.

(73) The structure of the biokinetic model for systemic aluminium applied in this report is
shown in Fig. 6.1. Transfer coefficients are listed in Table 6.2.

:‘ REmO i | Other tissue :
|
| ] |
. | _ : PRk | Other 2 :
I Cortical Cor;tlcal T i ' |
I volume surface L I
I I 2] Othent !
: : Blood 2 | :
I Trabecular Trabecular [ - - -
: volume surface :
I I I
=& am——m=————— |
\i/ Colon content
Urine bladder Faeces
content

Fig. 6.1. Structure of the biokinetic model for systemic aluminium.
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Table 6.2. Age-specific transfer coefficients for aluminium

Transfer coefficients (d™!)

Pathway 100d ly S5y 10y 15y Adult

Blood 1 UB content 9.98E+00  9.98E+00 9.98E+00 9.98E+00 9.98E+00 9.98E+00
Blood 1 RC content 1.66E-01 1.66E-01  1.66E-01 1.66E-01 1.66E-01 1.66E-01
Blood 1 Trab surface 8.32E-02  832E-02 8.32E-02 8.32E-02 8.32E-02 8.32E-02
Blood 1 Cort surface 8.32E-02  832E-02 8.32E-02 8.32E-02 8.32E-02 8.32E-02
Blood 1 Other 1 5.74E+00  5.74E+00 5.74E+00 5.74E+00 5.74E+00 5.74E+00
Blood 1 Other 2 5.82E-01  5.82E-01 5.82E-01 5.82E-01 5.82E-01  5.82E-01
Blood 2 Blood 1 3.50E-02  3.50E-02 3.50E-02 3.50E-02 3.50E-02  3.50E-02
Other 1 Blood 1 5.00E-01  5.00E-01 5.00E-01 5.00E-01  5.00E-01  5.00E-01
Other 2 Blood 2 5.00E-04  5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04
Trab surface Blood 2 8.22E-03  2.88E-03 1.81E-03 1.32E-03 9.59E-04 4.93E-04
Trab surface Trab volume 8.22E-03  2.88E-03 1.81E-03 1.32E-03 9.59E-04 2.47E-04
Trab volume Blood 2 8.22E-03  2.88E-03 1.81E-03 1.32E-03 9.59E-04 4.93E-04
Cort surface Blood 2 8.22E-03  2.88E-03 1.53E-03 9.04E-04 521E-04 8.21E-05
Cort surface Cort volume 8.22E-03  2.88E-03 1.53E-03 9.04E-04 521E-04 4.11E-05
Cort volume Blood 2 8.22E-03  2.88E-03 1.53E-03 9.04E-04 521E-04 8.21E-05

UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.

6.2. Dosimetric data for aluminium

Table 6.3. Committed effective dose coefficients (Sv Bq™!) for the inhalation or ingestion of
26A1 compounds

Effective dose coefficients (Sv Bq™')

3m ly S5y 10y 15y Adult
Inhaled particulate materials (1 pum AMAD aerosols)
Type F 2.3E-08 2.1E-08 1.3E-08 9.9E-09 9.3E-09 1.1E-08
Type M, aluminium metal 5.9E-08 5.4E-08 3.3E-08 2.3E-08 1.9E-08 2.1E-08
Type S (default), 5.4E-07 5.6E-07 4.6E-07 3.9E-07 4.0E-07 4.2E-07
aluminium oxide, fluoride,
bauxite ore, chlorhydrate,
sulphate, all unspecified
forms
Ingested materials
Soluble forms and 7.7E-09 4.6E-09 2.8E-09 2.0E-09 1.4E-09 1.3E-09
aluminium in diet
Insoluble forms, all 5.0E-09 4.4E-09 2.6E-09 1.9E-09 1.3E-09 1.2E-09

unspecified forms

AMAD, activity median aerodynamic diameter.
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7. SILICON (Z=14)

7.1. Routes of Intake
7.1.1. Inhalation

(74) For silicon, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of silicon are given in Table 7.1 [taken from Section 7 of Publication 151
(ICRP, 2022)].

Table 7.1. Absorption parameter values for inhaled and ingested silicon.
Absorption parameter values”

Inhaled particulate materials £ s (d7) ss (d7)
Default parameter values’™

Absorption Type Assigned forms

F - 1 30 -

M 0.2 3 0.005
St 0.01 3 0.0001

Ingested materials”

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15years  adult
Silicon dioxide and silicates, 0.02 0.01 0.01 0.01 0.01 0.01
silicon in food

Orthosilicic acid, silicon in 1 0.5 0.5 0.5 0.5 0.5

drinking water

“It is assumed that the bound state can be neglected for silicon (i.e. fi, = 0). The values of s, for Type F, M and S
forms of silicon (30, 3 and 3 d! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of silicon applicable to the age-group of interest (e.g. 0.5 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.5 for adults).

7.1.2. Ingestion
7.1.2.1.  Adults

(75) Silicon occurs naturally in food as silicon dioxide and silicates. Orthosilicic acid,
formed by hydration of the oxide, is the major silicon species present in drinking water and
other liquids. All forms of silica are considered to be poorly soluble particles which absorption
is not well documented, except orthosilicic acid that is readily absorbed from the gastro-
intestinal tract in humans. For details, see Publication 151 (ICRP, 2022).

(76) In Publications 30 and 72 (ICRP, 1981, 1995c), fi was taken to be 0.01 for all
compounds of silicon. In Publication 151 (ICRP, 2022) a value of fo = 0.01 was used for silicon
dioxide and silicates, and a larger fa = 0.5 was adopted for orthosilicic acid. In this publication,
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the same values of fa = 0.01 and fa = 0.5, respectively, are adopted for ingestion of silicon in
food and in drinking water, respectively, by adult members of the public.

7.1.2.2. Children

(77) Consistently with the approach of Publication56 (ICRP, 1990), an fa = 0.02 is adopted
here for ingestion of silicon dioxide and silicates and of silicon in diet by 3 month old infants ;
an fa = 1 is used for ingestion of orthosilicic acid and of silicon in drinking water by 3 month
old infant. For children of older ages, the same values as for adults (fa = 0.01 for silicon dioxide
and silicates and for silicon in diet, fo = 0.5 for orthosilicic acid and for silicon in drinking
water) are used.

7.1.3. Systemic distribution, retention and excretion of silicon
7.1.3.1. Biokinetic data

(78) Popplewell et al. (1998) measured urinary excretion of *2Si (T2 =132 y) following
ingestion by a healthy adult male human. About 34% of ingested activity was excreted over 0-
12 h, 1% over 12-24 h, and 0.5% over 24- 48 h.

(79) Sauer et al. (1959) measured the concentration of *!Si in tissue of guinea pigs over the
first 8 h after oral administration of *'SiO,. The highest concentration was found in kidney at
all measurement times, but the liver contained roughly twice as much and the skeletal muscle
20-50 times as much total activity as the kidneys.

(80) Adler et al. (1986) studied the behaviour of *!Si in rats after injection of *!Si(OH)a.
Activity in blood was nearly equally distributed between plasma and erythrocytes. The highest
tissue concentration at 1-2 h was found in kidney. At 3 h nearly equal concentrations were seen
in kidney and liver. Initially, ~85% of total-body activity was found in skin, muscle, and bone.
An increasing concentration ratio of bone to plasma was observed over the first few hours.

(81) Berlyne et al. (1986) studied the distribution of 3!Si in rats 30 min after its injection
as 3!S-labeled silicic acid. The highest concentration was found in kidney, followed by skin
and testis (each 0.35, normalized to 1.0 for kidney), bone (0.30), and liver (0.25). The skeletal
muscle, skin, bone, liver, and kidneys contained about 15%, 11%, 3.4%, 1.6%, and 1.5%,
respectively, of the administered amount.

(82) Silicon and germanium are chemical analogues and show similar biokinetics. Mehard
and Volcani (1975) compared the kinetics of *'Si (T12 = 157 min) and ®*Ge (271 d) in rats after
intravenous (IV) or intraperitoneal (IP) injection of *!Si(OH)s and ®Ge(OH)s. The peak
concentration of !Si in kidney was about 3 times that in liver following IV injection and about
5 times that in liver following IP injection. An apparent difference in kinetics of Ge and *'Si
was more rapid depletion of ®*Ge. The concentration of *!Si in the liver was moderately higher
than that of ®*Ge over the first two hours after intravenous injection.

7.1.3.2. Biokinetic model for systemic silicon

(83) The biokinetic model for systemic silicon applied to workers in Publication 151
(ICRP, 2022) is applied in this report to adult members of the public. The basis for the model
is described in that report. The same model is applied to preadults except that increased rates
of loss from bone compartments are assigned to preadults, as the rate of removal from bone is
based on the bone turnover rate. The bone turnover rates applied in the model are reference
values given in Publication 89 (ICRP, 2002).

(84) The structure of the biokinetic model for systemic silicon used in this report is shown
in Fig. 7.1. Transfer coefficients are listed in Table 7.2.
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Fig. 7.1. Structure of the biokinetic model for systemic silicon.
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Table 7.2. Age-specific transfer coefficients for silicon.
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Transfer coefficients (d!)

Pathway 100 d ly Sy 10y 15y Adult
Blood Other 1.20E+00  1.20E+00 1.20E+00 1.20E+00 1.20E+00 1.20E+00
Blood Kidneys 2.71E-01  2.71E-01  2.71E-01  2.71E-01  2.71E-01  2.71E-01
Blood Liver 541E-01 541E-01 541E-01 541E-01 541E-01 5.41E-01
Blood UB content 7.70E+00  7.70E+00 7.70E+00 7.70E+00 7.70E+00 7.70E+00
Blood RC content 1.35E-02  1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02
Blood Trab surface 1.35E-01  1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01
Blood Cort surface 1.35E-01  1.35E-01 1.35E-01 1.35E-01 1.35E-01  1.35E-01
Other Blood 3.00E-01  3.00E-01  3.00E-01 3.00E-01 3.00E-01  3.00E-01
Kidneys UB content 1.20E+00  1.20E+00 1.20E+00 1.20E+00 1.20E+00 1.20E+00
Liver Blood 9.00E-01  9.00E-01  9.00E-01  9.00E-01  9.00E-01  9.00E-01
Trab surface Blood 3.00E-01  3.00E-01  3.00E-01 3.00E-01 3.00E-01  3.00E-01
Cort surface Blood 3.00E-01  3.00E-01  3.00E-01 3.00E-01 3.00E-01  3.00E-01
Trab surface Trab volume 1.50E-03  1.50E-03 1.50E-03 1.50E-03  1.50E-03  1.50E-03
Cort surface Cort volume 1.50E-03  1.50E-03 1.50E-03 1.50E-03  1.50E-03  1.50E-03
Trab volume  Blood 8.22E-03  2.88E-03 1.81E-03 1.32E-03 9.59E-04 4.93E-04
Cort volume Blood 8.22E-03  2.88E-03 1.53E-03 9.04E-04 5.21E-04 8.21E-05

UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.

7.1.3.3.

Treatment of radioactive progeny

(85) The treatment of radioactive progeny produced in systemic compartments after intake
of a radioisotope of silicon is described in Section 7.2.3.3. of Publication 151 (ICRP, 2022).
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Dosimetric data for silicon

989

990  Table 7.3. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of
991  *Si compounds.

Effective dose coefficients (Sv Bq™!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 8.3E-10 4.4E-10 1.9E-10 1.2E-10 9.3E-11 7.5E-11
Type M, default 4.6E-08 4.2E-08 2.5E-08 1.7E-08 1.3E-08 1.3E-08
Type S 4.8E-07 5.0E-07 4.0E-07 3.3E-07 3.4E-07 3.5E-07

Ingested materials
Silicon dioxide and 3.5E-10 2.1E-10 1.1E-10 6.9E-11 5.0E-11 3.8E-11
silicates, silicon in food
Orthosilicic acid, silicon 1.3E-09 5.2E-10 2.6E-10 1.6E-10 1.4E-10 1.1E-10
in drinking water

992  AMAD, activity median aerodynamic diameter.
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8. CHLORINE (Z=17)

8.1. Routes of Intake
8.1.1. Inhalation

(86) For chlorine, default parameter values were adopted for the absorption to blood from
the respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa
values for gas and vapour forms of chlorine are given in Table 8.1 and for particulate forms in
Table 8.2 [both taken from Section 8 of Publication 151 (ICRP, 2022)]. By analogy with the
halogen iodine, considered in detail in Publication 137 (ICRP, 2017), default Type F is
recommended for particulate forms in the absence of specific information on which the
exposure material can be assigned to an absorption type.

(87) For chlorine, and the other halogens, intakes could be in both particulate and gas and
vapour forms, and it is therefore assumed that inhaled chlorine is 50% particulate and 50%
gas/vapour in the absence of information (ICRP, 2002b).

Table 8.1. Deposition and absorption for gas and vapour compounds of chlorine.

Percentage deposited (%) Absorption’
Chemical Absorption from the alimentary
form/origin Total ET; ET, BB bb Al Type tract, fa*T
Unspecified 100 0 20 10 20 50 F 1.0

ET,, anterior nasal passage; ET», posterior nasal passage, pharynx and larynx; BB, bronchial; bb, bronchiolar; Al,
alveolar-interstitial.

*Percentage deposited refers to how much of the material in the inhaled air remains in the body after exhalation.
Almost all inhaled gas molecules contact airway surfaces but usually return to the air unless they dissolve in, or
react with, the surface lining. The default distribution between regions is assumed: 20% ET,, 10% BB, 20% bb,
and 50% Al

It is assumed that the bound state can be neglected for chlorine (i.e. i = 0).

*For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied [i.e. the product of f; for the absorption type
(or specific value where given) and the fi value for ingested soluble forms of chlorine (1.0)].

The value of fa= 1.01s applicable to all age-groups.

Table 8.2. Absorption parameter values for inhaled and ingested chlorine.

Absorption parameter values”

Inhaled particulate materials fe s (dh s (d7h
Default parameter values'

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 1 1 1 1 1 1

“It is assumed that the bound state can be neglected for chlorine (i.e. f, = 0). The values of s, for Type F, M and S
forms of chlorine (30, 3 and 3 d™' respectively) are the general default values.
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For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied: i.e. the product of £; for the absorption type
and the fa value for ingested soluble forms of chlorine (1).

‘Default Type F is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide (fa = 1).

8.1.2. Ingestion

(88) Ingested chlorine is largely absorbed from the gut. For details, see Publication 151
(ICRP, 2022). In Publications 30, 72 (ICRP, 1980, 1995¢) and Publication 151, the fractional
absorption was taken to be 1 for all compounds of chlorine. In this publication, an fa = 1 is also
used for all chemical forms of chlorine ingested at all ages.

8.1.3. Systemic distribution, retention and excretion of chlorine
8.1.3.1. Biokinetic data

(89) The dominant form of chlorine in the human body is inorganic chloride. Ingested
chloride is rapidly and nearly completely absorbed to blood and largely cleared from blood
within a few minutes (Ray et al., 1952). It is distributed mainly in extracellular fluids. The
biological half-time for the total body is typically on the order of 8-15 d (Ray et al., 1952) but
may be reduced by elevated intake of chloride or increased by a salt-deficient diet.

(90) The systemic kinetics of chloride closely resembles that of bromide (Reid et al., 1956;
Pavelka, 2004). Absorbed bromide clears rapidly from blood and replaces part of the
extracellular chloride, with the molar sum of chloride and bromide remaining constant at about
110 mmol/L (Pavelka, 2004). The biological half-time of bromide in the human body typically
is on the order of 12 d (S6remark, 1960).

8.1.3.2. Biokinetic model for systemic chlorine

(91) The biokinetic model for systemic chlorine in workers (ICRP, 2002) is applied in this
report to all age groups. The systemic behaviour of chlorine is assumed to be the same as that
of bromine. The relevant physiological forms of chlorine and bromine are assumed to be
chloride and bromide, respectively. The common biokinetic model for chloride and bromide is
based on the assumptions of rapid removal from blood (T12 =5 min), a uniform distribution in
tissues, removal of 50% of absorbed chloride or bromide from the body in 12 d, and a urinary
to faecal excretion ratio of 100:1. These conditions are approximated, using a first-order
recycling model, with the transfer coefficients listed in Table 8.3.

Table 8.3. Age-specific transfer coefficients for chlorine.
Transfer coefficients (d™')

Pathway 100d ly S5y 10y 15y Adult

Blood Other 2.00E+02  2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
Blood UB content 8.30E-01  8.30E-01 8.30E-01 8.30E-01 8.30E-01 8.30E-01
Blood RC content 8.30E-03  8.30E-03 8.30E-03 8.30E-03 8.30E-03  8.30E-03
Other Blood 1.50E+01  1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01

UB, urinary bladder; RC, right colon.
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1061  8.1.3.3. Treatment of radioactive progeny

1062 (92) The treatment of radioactive progeny produced in systemic compartments after intake
1063  of a radioisotope of chlorine is described in Section 8.2.3.3. of Publication 151 (ICRP, 2022).

1064 8.2. Dosimetric data for chlorine

1065  Table 8.4. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
1066  3°Cl compounds.

Effective dose coefficients (Sv Bq!)

Inhaled gases or vapours 3m ly Sy 10y 15y Adult
Unspecified 9.3E-09 6.3E-09 3.3E-09 1.9E-09 1.2E-09 1.0E-09

Inhaled particulate materials (1 pm AMAD aerosols)

Type F, default 4.9E-09 3.3E-09 1.5E-09 8.9E-10 4.9E-10 4.3E-10
Type M 2.0E-08 1.8E-08 1.0E-08 6.6E-09 5.1E-09 4.9E-09
Type S 1.6E-07 1.7E-07 1.3E-07 1.0E-07 1.0E-07 1.1E-07

Ingested materials
All compounds 9.1E-09 6.2E-09 3.2E-09 1.9E-09 1.2E-09 9.9E-10

1067  AMAD, activity median acrodynamic diameter.
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9. POTASSIUM (Z=19)
9.1. Routes of Intake
9.1.1. Inhalation
(93) For potassium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of potassium are given in Table 9.1 [taken from Section 9 of Publication

151 (ICRP, 2022)].

Table 9.1. Absorption parameter values for inhaled and ingested potassium.

Absorption parameter values”

Inhaled particulate materials f s (d7) ss (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year S years 10 years 15 years adult
All compounds 1 1 1 1 1 1

“It is assumed that the bound state can be neglected for potassium (i.e. f, = 0). The values of s, for Type F, M, and
S forms of potassium (30, 3, and 3 d! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of potassium (1).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fi for the secreted activity is the highest value for any
form of the radionuclide (fa = 1).

9.1.2. Ingestion

(94) Absorption of potassium from the gastrointestinal tract being nearly complete, it has
been taken to be 100% in Publications 30, 72 and 151 (ICRP, 1980, 1995¢c, 2022). In this
publication, fa = 1 is also used for all forms of potassium ingested at all ages.

9.1.3. Systemic distribution, retention and excretion of potassium
9.1.3.1. Biokinetic data

(95) The alkali metal potassium is an essential element with multiple functions in the
human body including regulation of fluid balance and control of electrical activity of the heart,
skeletal muscle, and nerves. The concentration of K in the human body is about 2 g kg™! body
mass but varies with a variety of factors, particularly the mass of muscle as a fraction of body
mass. Measurements of K concentrations in postmortem tissues and in plasma and red blood
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cells of living subjects indicate the following approximate distribution of K in an adult male
human: skeletal muscle, 65% of the total-body content, skeleton 9%, red blood cells 8%, liver
3%, brain 3%, kidneys 0.6%, blood plasma 0.4%, and remainder 11% (based on a review by
Leggett and Williams, 1986, and a detailed autopsy study by Zhu et al., 2010). About 85% of
losses from the body are in urine, with the remainder removed mainly in faeces and sweat.

(96) About 98% of the body’s K resides in cells, and 2% is distributed in extracellular
fluids (ECF). The ECF concentration is maintained in a range of about 137-215 mg L™!. The
kidneys are primarily responsible for homeostatic control of the body’s K content through
adjustment of urinary losses to accommodate variation in K intake. Adjustments in renal K
excretion occur over several hours, and changes in extracellular K are buffered during that time
by movement of K between skeletal muscle and blood plasma (Langham-New and Lambert,
2012; Palmer, 2015; Hinderling, 2016; Udensi and Tchounwou, 2017).

(97) Intravenously injected radio-potassium is rapidly removed from blood plasma and
distributed almost entirely to tissues, but a small percentage enters excretion pathways (Corsa
et al., 1950; Black et al., 1955; Burch et al., 1955). About 2% remains in plasma at 20 min and
1% or less remains at 2 h (Corsa et al., 1950; Black et al., 1955). The rate of transfer of K from
plasma to a tissue depends on the percentage of cardiac output received by the tissue and the
tissue’s K extraction fraction, i.e., the fraction of K extracted by the tissue from plasma during
a single passage from the tissue’s arterial input to its venous output. For example, a K extraction
fraction of ~0.9 has been estimated for kidneys, heart tissue, and lung tissue; ~0.8 for intestines,
~0.6 for liver, and ~0.01-0.02 for brain (review by Leggett and Williams, 1986). The kidneys,
which have a high K extraction fraction and receive roughly a fifth of cardiac output,
accumulate as much as 20% of an intravenously injected K tracer within a few minutes (Emery
et al, 1955; Black et al., 1955). Tissues with a low blood perfusion rate such as fat or resting
skeletal muscle, or a low extraction fraction such as brain, accumulate the tracer relatively
slowly. Tissues such as kidneys with a high rate of uptake but a relatively low content of K
return much of the accumulated tracer to blood over a short period (Black, 1955). After several
hours, skeletal muscle typically contains most of the retained amount. The red blood cells
gradually accumulate several percent of the injected amount over 2-3 d (Corsa et al., 1950).

(98) Various aspects of the biokinetics of K have been studied in human subjects and
laboratory animals (Love and Burch, 1953; Ginsburg and Wilde, 1954; Black et al., 1955;
Ginsburg, 1962; Johnson et al., 1969; Jasani and Edmonds, 1971; Downey and Bashour, 1975;
Sterns et al., 1979; ICRP, 1980; Leggett and Williams, 1986; Hinderling, 2016). A detailed,
physiologically based biokinetic model for systemic K in adult humans was proposed by
Leggett and Williams (1986). The model was built around a blood flow model depicting the
distribution of cardiac output to 12 tissue compartments. Additional compartments were added
to address transfer of K between plasma and red blood cells and between systemic pools and
gastrointestinal content. Removal from the body was assumed to be primarily in urine with
relatively small losses in faeces and sweat. Movement of K was depicted as a system of first-
order processes. The transfer rate from plasma into a tissue T was estimated as the product of
the plasma flow rate to that tissue and a tissue-specific extraction fraction, Et. The transfer rate
from tissue T to plasma was estimated from the inflow rate and the relative contents of K in
plasma and tissue T at equilibrium based mainly on autopsy data for K and typical
concentrations of K in plasma and red blood cells. Transfer rates between plasma and red blood
cells and between systemic compartments and gastrointestinal contents were based on
empirical data. Model predictions of the blood clearance, uptake and loss by systemic tissues,
total-body retention, and path-specific excretion rates of K were consistent with observations
for human subjects. The model predicts that the biological half-time of an intravenously
injected tracer in an adult is ~31 d, derived as the time for the total-body content to decrease
from 50% to 25% of the injected amount.
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(99) The biokinetic model for systemic K applied in Publication 30, Part 2 (ICRP, 1980),
depicted total-body K in an adult human as a well-mixed pool from which K is removed with
a biological half-time of 30 d. This half-time was based on daily intake of 3.3 g K and total-
body content of 140 g K for a reference adult (ICRP, 1975). Similar derivations of biological
half-times of K in pre-adults based on reported age-specific dietary K (e.g., Alaimo et al., 1994;
Hunt and Meachum, 2001; Hoy et al., 2012) and estimated total-body K (e.g. Flynn et al., 1972;
Novak, 1973; Lloyd et al., 1973; Lebedev and Yakovlev, 1993) are variable but suggest
monotonically increasing biological half-times from infancy to age 15 y. Central estimates are
roughly 10 d for the first year of life, 15 d for age 5y, 20 d for age 10y, and 30 d for age 15 y.

(100) The alkali metal rubidium (Rb) is a close chemical and physiological analogue of K.
The section on Rb in this report cites studies indicating that the rate of biological removal of
radio-rubidium from the body in the early hours or days after injection is about two-thirds that
of radio-potassium. This is consistent with relative biological half-times of K (30 d) and Rb
(44 d) estimated for adults in Publication 30, Part 2 (ICRP, 1980). The following long-term
biological half-times for Rb in pre-adults were based on data on retention of radio-rubidium in
healthy children and adults and the similarity in the kinetics of Rb and the frequently studied
physiological analogue caesium (Cs) early in life: 17 d for age 100 d, 19 d for age 1y, 25 d for
ageSy,31dforage 10y, and 41 d for age 15 y. Assuming the rate of loss of Rb from the body
is two-thirds that of K, the estimated long-term biological half-times of K are about 11, 13, 17,
21, and 27 d for ages 100 d, 1 y, 5y, 10 y, and 15 y, respectively. These half-times are
reasonably consistent with values based on age-specific intake and total-body content of K.

9.1.3.2. Biokinetic model for systemic potassium

(101) The biokinetic model for systemic K in workers used in Publication 151 (ICRP, 2022)
is a simplification of the model of Leggett and Williams (1986) with a structure (Fig. 9.1) more
consistent with the structures of other systemic models applied in this report series. That is, the
model depicts a central blood compartment (plasma) in exchange with a set of peripheral tissue
compartments representing relatively important systemic repositories of K. In Publication 151
the transfer coefficients were set for consistency with the original model (Leggett and Williams,
1986) regarding retention in the total body as well as in individual tissues that were depicted
explicitly in both the original and simplified versions of the model.

(102) The biokinetic model for systemic K applied to workers in Publication 151 is applied
in this report to adult members of the public. The model is extended to pre-adult ages by
adjustment of transfer coefficients to reflect pertinent anatomical or physiological changes
during growth and to approximate the following estimated long-term biological half-times in
the total body based on the assumed relation of K and Rb retention: 11 d for infants, 13 d for
age 1y, 17 d forage 5y, 21 d for age 10 y, and 27 d for age 15 y.

(103) The following adjustments of the model for adults are made for application to pre-
adult ages:

e The transfer rate from plasma to skeletal muscle at ages 100 d, 1 y, 5y, and 10 y is assumed
to be 0.5, 0.5, 0.7, and 0.85, respectively, times the transfer rate for the adult based on
changes with age in muscle mass as a percentage of total-body mass.

e For infants and children through age 10 y, the transfer rates from plasma to bone surface
compartments are set at twice the value for the adult to reflect a high blood flow rate to
bone compared with adults.

e The transfer rate from plasma to the compartment Other is modified to maintain the same
outflow rate from plasma at all ages, that is, to balance the changes in transfer from plasma
to skeletal muscle and bone surface.
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1197 e For ages 100 d through 15 y, flow rates out of tissue compartments (Kidneys, Muscle,

1198 Cortical and Trabecular bone surface, Red marrow, Other) in the model for adults are
1199 increased by the following factors to approximate the age-specific biological half-times for
1200 the total-body retention times indicated above: 2.3 for age 100 d, 1.8 for age 1y, 1.6 for
1201 age 5y, 1.4 for age 10y, and 1.1 for age 15 y. The observed (and modeled) half-time of K
1202 in the body depends to some extent on the observation period. The indicated values are
1203 based on the time required for the total-body content to decline from 50% to 25% of an
1204 acute input to blood.
1205
Excreta
Muscle
Other
iBome. 22 === | Plasma ped marrow
| |
. <

! Cortical surface [

: B Liver

: Trabecular surface i

| |

L I llI\ \l/

RBC Colon content
Urinary | | Kidneys !
Urine [<| bladder =] Faeces
content

1206
1207  Fig. 9.1. Structure of the biokinetic model for systemic potassium.
1208
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1209  Table 9.2. Age-specific transfer coefficients for potassium.
Transfer coefficients (d')

Pathway 100d ly Sy 10y 15y Adult

Blood RBC 6.00E+00  6.00E+00 6.00E+00  6.00E+00  6.00E+00  6.00E+00
Blood Kidneys 2.57E+02  2.57E+02 2.57E+02  2.57E+02  2.57E+02  2.57E+02
Blood Liver 2.30E+02  2.30E+02  2.30E+02  2.30E+02  2.30E+02  2.30E+02
Blood Muscle 1.28E+02  1.28E+02 1.79E+02 2.17E+02  2.55E+02  2.55E+02
Blood Trab surface  3.36E+01  3.36E+01 3.36E+01 3.36E+01 1.68E+01  1.68E+01
Blood Cort surface  2.24E+01 2.24E+01 2.24E+01 2.24E+01 1.12E+01  1.12E+01
Blood Red marrow  2.80E+01  2.80E+01 2.80E+01 2.80E+01 2.80E+01  2.80E+01
Blood Other 5.70E+02  5.70E+02  5.19E+02 4.80E+02 4.70E+02  4.70E+02
Blood UB content 5.50E+00 5.50E+00 5.50E+00 5.50E+00 5.50E+00  5.50E-+00
Blood RC content 8.30E-01 8.30E-01 8.30E-01 8.30E-01 8.30E-01 8.30E-01
Blood Excreta 2.00E-01  2.00E-01  2.00E-01  2.00E-01  2.00E-01 2.00E-01
RBC Blood 3.80E-01  3.80E-01 3.80E-01 3.80E-01 3.80E-01 3.80E-01
Kidneys Blood 4.92E+02 3.85E+02 3.42E+02 3.00E+02 2.35E+02 2.14E+02
Liver Blood 5.64E+01 4.41E+01 3.92E+01 3.43E+01 2.70E+01 2.45E+01
Muscle Blood 3.11E+00 2.43E+00 2.16E+00 1.89E+00 1.49E+00 1.35E+00
Trab surface  Blood 6.14E+00 4.81E+00 4.27E+00 3.74E+00 2.94E+00 2.67E+00
Cort surface  Blood 6.14E+00 4.81E+00 4.27E+00 3.74E+00 2.94E+00 2.67E+00
Red marrow  Blood 6.14E+00 4.81E+00 4.27E+00 3.74E+00 2.94E+00 2.67E+00
Other Blood 2.76E+01  2.16E+01 1.92E+01 1.68E+01  1.32E+01  1.20E+01

1210  RBC, red blood cells; UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.
1211 9.1.3.3. Treatment of radioactive progeny

1212 (104) The treatment of radioactive progeny produced in systemic compartments after intake
1213 ofaradioisotope of potassium is described in Section 9.2.3.3. of Publication 151 (ICRP, 2022).

1214 9.2. Dosimetric data for potassium

1215  Table 9.3. Committed effective dose coefficients (Sv Bq-1) for the inhalation or ingestion of
1216  “°K compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 9.0E-09 7.6E-09 3.5E-09 2.3E-09 1.6E-09 1.4E-09
Type M, default 4.0E-08 3.6E-08 2.1E-08 1.4E-08 1.1E-08 1.1E-08
Type S 3.7E-07 3.9E-07 3.2E-07 2.6E-07 2.7E-07 2.8E-07

Ingested materials
All compounds 1.7E-08 1.4E-08 7.8E-09 4.9E-09 3.8E-09 3.2E-09

1217  AMAD, activity median acrodynamic diameter.
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10. SCANDIUM (Z=21)
10.1. Routes of Intake
10.1.1.  Inhalation
(105) For scandium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of scandium are given in Table 10.1 [taken from Section 10 of Publication

151 (ICRP, 2022)].

Table 10.1. Absorption parameter values for inhaled and ingested scandium.

Absorption parameter values”

Inhaled particulate materials f; s (d7h) ss (A7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x10*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3months 1 year S years 10 years 15 years adult
All compounds 0.01 0.001 0.001 0.001 0.001 0.001

“It is assumed that the bound state can be neglected for scandium (i.e. o = 0). The values of s; for Type F, M and
S forms of scandium (30, 3 and 3 d~! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of silicon applicable to the age-group of interest (e.g. 0.001 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.001 for adults).

10.1.2.  Ingestion
10.1.2.1. Adults

(106) The limited information available indicates that the absorption of scandium is small,
see Publication 151 (ICRP, 2022) for details. In Publications 30 and 72 (ICRP, 1981, 1995c¢),
fi was taken to be 10 by analogy with yttrium. A value of fo = 10~} was adopted in Publication
151 for all chemical forms of scandium. The same value is used in this publication for ingestion
of all forms of scandium by adult members the public.

10.1.2.2. Children

(107) Consistently with the approach of Publication56 (ICRP, 1990), an fa = 0.01 is adopted
here for 3 month old infants and the adult value of f4 = 107 is used for older children.
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10.1.3. Systemic distribution, retention and excretion of scandium
10.1.3.1. Biokinetic data

(108) Scandium is the lightest of the rare earth elements, which also include yttrium and the
15 lanthanide elements. These elements have similar chemical properties and are generally
found together in nature. The biokinetics of scandium has been studied in laboratory animals
including rats, mice, and rabbits (Durbin, 1960; Rosoff et al., 1963; Taylor et al., 1966; Basse-
Cathalinat et al., 1968; Zalikin et al., 1969; Hara and Freed, 1973; Freed et al., 1975; Lachine
et al.,, 1976) and to a limited extent in human subjects (Rosoff et al., 1965). Identified sites of
elevated deposition of scandium include liver, spleen, kidneys, bone, and bone marrow. The
relative contents of scandium in those tissues as well as its rates of urinary and faecal excretion
vary considerably among studies, presumably due to differences in study conditions including
chemical form, level of colloid formation after administration, and animal species. Much of the
available biokinetic information on scandium kinetics comes from interpretation of the
behaviour of ’Sc produced in the body after administration of “’Ca or partly produced in the
body after administration of a mixture of “’Ca and *’Sc. Overall, the biokinetics of scandium
appears to be broadly similar to that of the adjacent element yttrium in the periodic table.

10.1.3.2. Biokinetic model for systemic scandium

(109) The biokinetic model for systemic scandium applied to workers in Publication 151
(ICRP, 2022) is adopted for use in this report and is extended here to preadults.

(110) The model structure is shown in Fig. 10.1. Age-specific transfer coefficients are listed
in Table 10.2.

(111) The model structure is a modification of the generic model structure for bone-surface-
seeking radionuclides. Scandium is treated as a bone-surface seeker based on analogy with its
chemical analogue yttrium. In Publication 151 the spleen was added to the generic model
structure for bone-surface seekers as this organ appears to be an important repository for
scandium in laboratory animals. The generic structure was further modified regarding routes
of transfer to and from bone marrow compartments based on indications from animal studies
of relatively high transfer of scandium from plasma to marrow.

(112) The transfer coefficients describing outflow from bone tissue compartments are
default age-specific values for bone-surface seekers. The remaining transfer coefficients were
set as far as feasible for consistency with the biokinetic database for scandium. Where data for
scandium were lacking, parameter values were based on analogy with yttrium.
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Fig. 10.1. Structure of the biokinetic model for systemic scandium.

Table 10.2. Age-specific transfer coefficients for scandium.

—J

Transfer coefficients (d!)

Pathway 100 d ly S5y 10y 15y Adult

Blood 1 Blood 2 4.25E-01 4.38E-01 4.38E-01 4.38E-01 4.38E-01 4.50E-01
Blood 1 UB content 5.10E-02  5.25E-02  5.25E-02 5.25E-02 5.25E-02  5.40E-02
Blood 1 Liver 1 5.67E-01  5.83E-01 5.83E-01 5.83E-01 5.83E-01  6.00E-01
Blood 1 Kidneys 8.50E-02  8.75E-02  8.75E-02  8.75E-02  8.75E-02  9.00E-02
Blood 1 Spleen 5.67E-02  5.83E-02  5.83E-02 5.83E-02  5.83E-02  6.00E-02
Blood 1 Trab marrow  1.42E-01  1.46E-01 146E-01 146E-01 1.46E-01 1.50E-01
Blood 1 Cort marrow 1.42E-01 1.46E-01 146E-01 1.46E-01 1.46E-01 1.50E-01
Blood 1 Trab surface 2.25E-01 1.88E-01 1.88E-01  1.88E-01 1.88E-01  1.50E-01
Blood 1 Cort surface 2.25E-01 1.88E-01 1.88E-01 1.88E-01 1.88E-01  1.50E-01
Blood 1 Other 1 5.67E-01  5.83E-01 5.83E-01 5.83E-01 5.83E-01  6.00E-01
Blood 1 Other 2 5.16E-01  5.31E-01 5.31E-01 5.31E-01 5.31E-01 5.46E-01
Blood 2 Blood 1 4.62E-01  4.62E-01 4.62E-01 4.62E-01 4.62E-01  4.62E-01
Liver 1 SI content 5.78E-02  5.78E-02  5.78E-02  5.78E-02  5.78E-02  5.78E-02
Liver 1 Liver 2 5.78E-02  5.78E-02  5.78E-02  5.78E-02  5.78E-02  5.78E-02
Liver 1 Blood 1 1.16E-01  1.16E-01 1.16E-01  1.16E-01  1.16E-01  1.16E-01
Liver 2 Blood 1 6.93E-03  6.93E-03 6.93E-03 6.93E-03 6.93E-03  6.93E-03
Kidneys Blood 1 347E-02 347E-02 3.47E-02 3.47E-02 3.47E-02 3.47E-02
Spleen Blood 1 1.90E-03  1.90E-03 1.90E-03  1.90E-03 1.90E-03  1.90E-03
Other 1 Blood 1 2.31E-01 2.31E-01 231E-01 2.31E-01 2.31E-01 2.31E-01
Other 2 Blood 1 6.93E-03  6.93E-03 6.93E-03 6.93E-03 6.93E-03  6.93E-03
Trab marrow  Blood 1 6.93E-03  6.93E-03 6.93E-03 6.93E-03 6.93E-03  6.93E-03
Cort marrow  Blood 1 6.93E-03  6.93E-03 6.93E-03 6.93E-03 6.93E-03  6.93E-03
Trab surface Blood 1 8.22E-03  2.88E-03  1.81E-03  1.32E-03 9.59E-04 4.93E-04
Trab surface T bone V 8.22E-03  2.88E-03  1.81E-03  1.32E-03 9.59E-04 2.47E-04
Trab volume  Blood 1 8.22E-03  2.88E-03  1.81E-03  1.32E-03 9.59E-04 4.93E-04
Cort surface Blood 1 8.22E-03 2.88E-03  1.53E-03 9.04E-04 5.21E-04 8.21E-05
Cort surface C bone V 8.22E-03  2.88E-03  1.53E-03 9.04E-04 5.21E-04 4.11E-05
Cort volume Blood 1 8.22E-03  2.88E-03  1.53E-03 9.04E-04 5.21E-04 8.21E-05
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1286  10.1.3.3. Treatment of radioactive progeny

1287 (113) The treatment of radioactive progeny produced in systemic compartments after intake
1288  ofaradioisotope of scandium is described in Section 10.2.3.3. of Publication 151 (ICRP, 2022).

1289 10.2. Dosimetric date for scandium

1290  Table 10.2. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of
1291  *Sc compounds.

Effective dose coefficients (Sv Bq™!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 6.0E-10 4.2E-10 1.9E-10 1.4E-10 8.4E-11 6.9E-11
Type M, default 7.2E-10 5.2E-10 2.5E-10 1.9E-10 1.3E-10 1.1E-10
Type S 7.3E-10 5.3E-10 2.6E-10 1.9E-10 1.3E-10 1.1E-10

Ingested materials
All compounds 1.1E-09 9.1E-10 5.7E-10 4.1E-10 2.8E-10 2.3E-10

1292  AMAD, activity median acrodynamic diameter.
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11. TITANIUM (Z =22)
11.1. Routes of Intake
11.1.1. Inhalation
(114) For titanium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of titanium are given in Table 11.1 [taken from Section 11 of Publication

151 (ICRP, 2022)].

Table 11.1. Absorption parameter values for inhaled and ingested titanium.

Absorption parameter values”

Inhaled particulate materials f s (d7) ss (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year S years 10 years 15 years adult
All compounds 0.01 0.001 0.001 0.001 0.001 0.001

“It is assumed that the bound state can be neglected for titanium (i.e. f; = 0). The values of s, for Type F, M and S
forms of titanium (30, 3 and 3 d™!, respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the f) value for ingested soluble forms of titanium applicable to the age-group of interest (e.g. 0.001 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fi for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (e.g. 0.001 for adults).

11.1.2. Ingestion
11.1.2.1. Adults

(115) Titanium compounds are poorly absorbed from the gastro-intestinal tract, see
Publication 151 (ICRP, 2022) for some more details. In Publications 30 and 72 (ICRP, 1981,
1995¢), a fractional absorption of 0.01 was retained for titanium. In Publication 151, fa was
taken to be 0.001 for all chemical forms of titanium at the workplace. The same value fa =
0.001 is adopted here for titanium ingested by adult members of the public.

11.1.2.2. Children

(116) Consistently with the approach of Publication56 (ICRP, 1990), an fao = 0.01 is adopted
here for 3 month old infants and the value fao = 0.001 is used for older children.
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11.1.3. Systemic distribution, retention and excretion of titanium
11.1.3.1. Biokinetic data

(117) Thomas and Archuleta (1980) studied the distribution and retention of **Ti in mice
following its intraperitoneal (IP) or intravenous (IV) administration as chloride. The initial
systemic distribution depended strongly on the exposure mode but did not vary noticeably over
time after either IP or IV administration. Liver, spleen, kidneys, and gastrointestinal tract
contained about 25%, 3.3%, 1.7%, and 3.6%, respectively, of the total-body content after
intravenous injection and 8.4%, 2.1%, 2.0%, and 15%, respectively, after intraperitoneal
injection. Differences in the distributions following IP and IV administration appeared to result
largely from adherence of injected material to visceral organs near the injection site and
elevated uptake by the RE system in the case of IV injection. A mean biological half-time of
642 d was estimated for the total body.

(118) Merritt et al. (1992, 1995) examined the behaviour of Ti in hamsters following
repeated intraperitoneal or intramuscular injections of Ti salts over a few weeks. Transport
from the site of injection was slow. One week after the end of six weekly injections of 100 ug
of Ti tetrachloride, the following tissues showed Ti concentrations noticeably higher than found
in control animals: spleen, 40.5 ng/g (above the control level); liver, 6.9 pg/g; bone matrix, 3.3
pg/g; bone mineral, 0.9 pg/g; kidney, 2.1 pg/g.

(119) Sarmiento-Gonzalez et al. (2009) determined Ti concentration in tissues of rats 18
months after implant of Ti wires in the femur, 1 week after intraperitoneal injection of soluble
Ti as citrate, or 1 week after intraperitoneal injection of TiO» microparticles. The Ti
concentrations in kidneys, spleen, lungs, and heart normalized to a concentration of 1.0 in the
liver were, respectively, 2.7, 8.1, 7.4, and 2.1 for rats with implants; 6.5, 6.7, 1.8, and 0.74 for
rats injected with Ti citrate; and 2.1, 2.1, 15, and 2.5 for rats injected with Ti dioxide.

(120) Golasik et al. (2016a, 2016b) studied the Ti distribution in selected tissues of rats
following administration in ionic form, either as a single IV injection or daily oral
administration for 30 d. During the first 24 h after IV injection or after the end of oral
administration, the highest tissue concentration was found in the kidneys, followed by liver.
Over this period the liver contained a greater portion of the administered Ti than the kidneys
due to the larger mass of the liver. In the early hours after IV injection the biological half-time
was about 3.3 h for the kidneys and 1.9 h for the liver. Much slower removal from these tissues
was seen from 3 h to 24 h after the end of oral administration.

(121)Miller et al. (1976) determined the distribution of *“Ti in lambs after oral or
intravenous (IV) administration of *TiCls. At 2 d after oral administration the mean activity
concentration in systemic tissues, normalized to 1.0 for liver, decreased in the order liver (1.0)
> kidneys (0.74) > pancreas (0.49) > spleen (0.28) > lung, heart, adrenals (< 0.15). At 2 d after
IV administration the blood, skeleton, kidneys, liver, and remaining tissue contained about
18.4%, 24.8%, 2.1%, 1.3%, and 48.8%, respectively, of the administered activity; cumulative
urinary excretion accounted for about 3%; and faecal excretion plus gastrointestinal (GI) tract
contents accounted for about 1.6%. This distribution broadly resembles that predicted by the
systemic model for Zr adopted in Publication 34 (ICRP, 2016): blood, 38%; bone, 22.8%;
kidneys, 0.4%; liver, 1.8%; other tissue, 33%, urine, 3%; faeces, 1%. Noticeable differences
are that the Zr model predicts slower removal from blood, balanced by slower accumulation in
“other tissue” and lower accumulation in the kidneys.

(122) Zhu et al. (2010) measured concentrations of 60 elements including Ti and Zr in 17
tissues obtained from autopsies of 68 Chinese men from four areas of China. All 68 subjects
were considered healthy until the time of sudden accidental death. Concentrations of the
elements were also measured in blood of living subjects from each of the four areas. The
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concentration of an element in a tissue or blood was reported as a median and range of measured
values. The results for Ti and Zr indicate considerable differences in their long-term
distributions in the adult human body. For example, the median concentration of Zr in rib (the
only bone addressed) was considerably greater than that in soft tissues other than liver, while
the median concentration of Ti in rib (983 pg/kg) was lower than the median concentration in
8 soft tissues (e.g., liver, 3220 pg/kg; muscle, 2060 ug/kg; kidney, 1770 ug/kg). A relatively
low median concentration (201 pg/kg) was determined for spleen. Blood, liver, kidneys, bone,
and all other tissues combined contained about 0.4%, 6%, 0.6%, 11%, and 82%, respectively,
of total-body Ti in these subjects based on median concentrations in tissues.

11.1.3.2. Biokinetic model for systemic titanium

(123) The biokinetic model for systemic titanium applied to workers in Publication 151
(ICRP, 2022) is applied in this report to adult members of the public. As described in
Publication 151, that model was based on reported data on Ti kinetics that did not appear to be
greatly influenced by its accumulation in the RE system. The initial distribution of Ti in adults
was based mainly on results of the study of Miller et al. (1976), which suggest that Ti distributes
similarly to that of Zr. The long-term kinetics of Ti is based on relative concentrations of Ti in
tissues indicated in the autopsy study of Zhu et al. (2010). The model for adults is extended to
pre-adult ages by modification of transfer rates to reflect elevated deposition of Ti in immature
bone and age-specific rates of removal from bone (ICRP, 2002). The bone model applied to Ti
is analogous to that applied to Zr in Part 1 of this series of reports on doses to the public from
environmental radionuclides [Publication 158 (ICRP, 2024)].

(124) The structure of the systemic model for Ti is shown in Fig. 11.1. Transfer coefficients
are listed in Table 11.2.

|
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| tissue :
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: [ | ___________ 1
l Trabecular TrabecuEare:—
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Urine |« bladder Faeces
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Fig. 11.1. Structure of the biokinetic model for systemic Ti. SI, small intestine.
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1398  Table 11.2. Age-specific transfer coefficients for titanium.

Transfer coefficients (d™!)

Pathway 100d ly Sy 10y 15y Adult

Blood 1 Blood 2 1.82E+00 1.91E+00 1.91E+00 1.91E+00 1.91E+00 2.00E+00
Blood 1 Liver 1 4.56E-02  4.78E-02 4.78E-02 4.78E-02 4.78E-02  5.00E-02
Blood 1 Kidneys 6.84E-02  7.17E-02  7.17E-02  7.17E-02  7.17E-02  7.50E-02
Blood 1 Other 1 9.12E-01  9.56E-01  9.56E-01  9.56E-01  9.56E-01  1.00E+00
Blood 1 Other 2 9.12E-01  9.56E-01  9.56E-01  9.56E-01  9.56E-01  1.00E+00
Blood 1 UB content 9.12E-02  9.56E-02  9.56E-02  9.56E-02  9.56E-02  1.00E-01
Blood 1 SI content 228E-02  2.39E-02 2.39E-02 2.39E-02 2.39E-02  2.50E-02
Blood 1 Trab surface 5.63E-01  4.69E-01 4.69E-01 4.69E-01 4.69E-01 3.75E-01
Blood 1 Cort surface 5.63E-01  4.69E-01 4.69E-01 4.69E-01 4.69E-01 3.75E-01
Blood 2 Blood 1 1.60E+00  1.60E+00 1.60E+00 1.60E+00 1.60E+00 1.60E+00
Liver 1 SI content 1.16E-01  1.16E-01 1.16E-01 1.16E-01  1.16E-01  1.16E-01
Liver 1 Liver 2 4.62E-01  4.62E-01 4.62E-01 4.62E-01 4.62E-01  4.62E-01
Liver 1 Blood 1 1.16E-01  1.16E-01 1.16E-01 1.16E-01  1.16E-01  1.16E-01
Liver 2 Blood 1 1.05E-03  1.05E-03 1.05E-03  1.05E-03 1.05E-03  1.05E-03
Kidneys Blood 1 2.10E-02  2.10E-02  2.10E-02  2.10E-02  2.10E-02  2.10E-02
Other 1 Blood 1 4.62E-01  4.62E-01 4.62E-01 4.62E-01 4.62E-01  4.62E-01
Other 2 Blood 1 2.00E-03  2.00E-03  2.00E-03  2.00E-03 2.00E-03  2.00E-03
T-bone-S Blood 1 2.00E-02  2.00E-02 2.00E-02  2.00E-02  2.00E-02  2.00E-02
Trab surface Trab volume  8.22E-03  2.88E-03  1.81E-03  1.32E-03 9.59E-04 2.47E-04
Trab volume  Blood 1 8.22E-03  2.88E-03 1.81E-03 1.32E-03 9.59E-04 4.93E-04
Cort surface Blood 1 2.00E-02  2.00E-02 2.00E-02 2.00E-02 2.00E-02  2.00E-02
Cort surface Cort volume 8.22E-03  2.88E-03 1.53E-03 9.04E-04 5.21E-04 4.11E-05
Cort volume Blood 1 8.22E-03  2.88E-03  1.53E-03 9.04E-04 5.21E-04 8.21E-05

1399  UB, urinary bladder; SI, small intestine; RC, right colon; Cort, cortical; Trab, trabecular.
1400  11.1.3.3. Treatment of radioactive progeny

1401 (125) The treatment of radioactive progeny produced in systemic compartments after intake
1402  ofaradioisotope of titanium is described in Section 11.2.3.3. of Publication 151 (ICRP, 2022).

1403 11.2. Dosimetric data for titanium

1404  Table 11.3. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of
1405  **Ti compounds.

Effective dose coefficients (Sv Bq™!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 6.0E-07 5.5E-07 3.6E-07 2.7E-07 2.4E-07 2.3E-07
Type M, default 2.7E-07 2.7E-07 1.9E-07 1.4E-07 1.3E-07 1.3E-07
Type S 5.9E-07 6.1E-07 4.9E-07 4.1E-07 4.2E-07 4.4E-07

Ingested materials
All compounds 3.3E-08 6.4E-09 4.0E-09 3.0E-09 2.3E-09 2.2E-09

1406  AMAD, activity median aerodynamic diameter.
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12. VANADIUM (Z=23)

12.1. Routes of Intake
12.1.1. Inhalation

(126) For vanadium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of vanadium are given in Table 12.1 [taken from Section 12 of Publication
151 (ICRP, 2022)].

Table 12.1. Absorption parameter values for inhaled and ingested vanadium.
Absorption parameter values”

Inhaled particulate materials £ s (d7h) ss (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3months 1 year S years 10 years 15 years adult
Sodium metavanadate 0.4 0.2 0.2 0.2 0.2 0.2
All other chemical forms, 0.02 0.01 0.01 0.01 0.01 0.01

including vanadium in diet

“It is assumed that the bound state can be neglected for vanadium (i.e. f; = 0). The values of s, for Type F, M and
S forms of vanadium (30, 3 and 3 d~! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied: i.e. the product of f; for the absorption
type and the fx value for ingested soluble forms of vanadium applicable to the age-group of interest (e.g. 0.2 for
adults).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (e.g. 0.2 for adults).

12.1.2. Ingestion
12.1.2.1. Adults

(127) The limited data available indicate a low absorption for vanadium, except in the
sodium metavanadate form, see Publication 151 (ICRP, 2022) for details.

(128) In Publications 30 and 72 (ICRP, 1981, 1995¢), fi was taken to be 0.01 for all
compounds of vanadium. In Publication 151, the same value of fa = 0.01 was retained for all
chemical forms of vanadium, except sodium metavanadate for which a higher value of fo = 0.2
was adopted. The same values are used here for ingestion of vanadium by adult members of
the public. In particular, fa = 0.01 is applied to vanadium in diet.
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12.1.2.2. Children

(129) The comparison of vanadium levels in tissues of 21 d and 115 d old rats fed vanadium
in water and diet suggested higher absorption in young animals (Edel et al., 1984). Consistently
with the approach of Publication56 (ICRP, 1990), an fa = 0.4 is adopted here for ingestion of
sodium metavanadate by 3-month-old infants. An fa = 0.02 is used for ingestion of all other
forms of vanadium by 3-month-old infants. The adult values are used for older children.

12.1.3. Systemic distribution, retention and excretion of vanadium
12.1.3.1. Biokinetic data

(130) The biokinetics of vanadium has been studied extensively in rodents (Strain et al 1964,
Thomassen and Leicester, 1964; Sabbioni et al, 1978, 1981; Sharma et al, 1980; Roshchin et
al, 1980; Hansen et al. 1982; Sharma, 1987; Merritt et al 1995; Amano et al, 1996; Setyawati
et al, 1998; Barceloux and Barceloux, 1999; Hirunuma et al, 1999; Ando et al, 1989, 1990;
Alimonti et al, 2000). Relatively high concentrations of injected or absorbed vanadium are seen
in kidneys, bone, and liver. Bone eventually becomes the dominant repository. Endogenous
excretion is primarily in urine (Barceloux and Barceloux, 1999). At least half of injected or
absorbed vanadium is excreted within 3-4 d (Durbin, 1960, Hirunuma et al 1999, Barceloux
and Barceloux, 1999).

(131) The Group VB elements vanadium, niobium, and tantalum share some biokinetic
properties such as primary sites of deposition (Durbin, 1960, Ando et al, 1989, 1990), but
vanadium is less firmly bound in tissues and is more rapidly excreted than niobium or tantalum.
In a study described by Durbin (1960), less than 10% of absorbed vanadium was retained after
2 mo, compared with at least threefold higher retention of niobium or tantalum.

(132) The reader is referred to Leggett and O’Connell (2018) for a more detailed discussion
of biokinetic data for systemic vanadium.

12.1.3.2. Biokinetic model for systemic vanadium

(133) The biokinetic model for systemic vanadium applied in Publication 151 (ICRP, 2022)
to workers is applied in this report to all ages.

(134) The model structure is shown in Fig. 12.1. The transfer coefficients are listed in Table
12.2.
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Fig. 12.1. Structure of the biokinetic model for systemic vanadium. SI, small intestine.
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1469  Table 12.2. Age-specific transfer coefficients for vanadium.

Transfer coefficients (d™!)

Pathway 100d ly S5y 10y 15y Adult

Blood 1 Blood 2 2.80E+00 2.80E+00 2.80E+00 2.80E+00 2.80E+00  2.80E+00
Blood 1 Liver 1 2.40E-01  2.40E-01  2.40E-01 240E-01 2.40E-01  2.40E-01
Blood 1 Kidneys 4.00E-01  4.00E-01  4.00E-01  4.00E-01  4.00E-01  4.00E-01
Blood 1 Other 1 2.44E+00 2.44E+00 2.44E+00 2.44E+00 2.44E+00 2.44E+00
Blood 1 Other2 2.40E-01  2.40E-01  2.40E-01 240E-01 2.40E-01  2.40E-01
Blood 1 UB content 1.52E+00 1.52E+00  1.52E+00 1.52E+00 1.52E+00  1.52E+00
Blood 1 SI content 1.20E-01  1.20E-01  1.20E-01  1.20E-01  1.20E-01 1.20E-01
Blood 1 Trab surface  1.20E-01  1.20E-01  1.20E-01  1.20E-01  1.20E-01 1.20E-01
Blood 1 Cort surface  1.20E-01  1.20E-01  1.20E-01  1.20E-01  1.20E-01 1.20E-01
Blood 2 Blood 1 5.00E-01  5.00E-01  5.00E-01  5.00E-01  5.00E-01  5.00E-01
Liver 1 SI content 9.00E-02  9.00E-02  9.00E-02  9.00E-02  9.00E-02  9.00E-02
Liver 1 Blood 1 3.75E-01  3.75E-01  3.75E-01  3.75E-01 3.75E-01  3.75E-01
Liver 1 Liver 2 3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02
Liver 2 Blood 1 1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02
Kidneys UB content 1.80E+00  1.80E+00 1.80E+00 1.80E+00  1.80E+00  1.80E+00
Other 1 Blood 1 1.40E-01  1.40E-01  1.40E-01  1.40E-01  1.40E-01 1.40E-01
Other 2 Blood 1 1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02
Trab surface  Blood 1 1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02
Cort surface  Blood 1 1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02

1470  UB, Urinary bladder; SI, Small intestine; Cort, Cortical; Trab, Trabecular.
1471  12.2. Dosimetric data for vanadium

1472 Table 12.3. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of
1473 8V compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 6.1E-09 4.0E-09 2.0E-09 1.4E-09 9.0E-10 8.6E-10
Type M, default 8.6E-09 6.8E-09 3.7E-09 2.6E-09 1.8E-09 2.0E-09
Type S 9.8E-09 7.9E-09 4.4E-09 3.1E-09 2.2E-09 2.4E-09

Ingested materials
Sodium metavanadate 8.9E-09 5.3E-09 3.0E-09 2.1E-09 1.5E-09 1.4E-09
All other chemical forms, 4.5E-09 4.0E-09 2.3E-09 1.6E-09 1.1E-09 1.1E-09
including vanadium in diet

1474  AMAD, activity median aerodynamic diameter.
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13. CHROMIUM (Z=24)
13.1. Routes of Intake
13.1.1.  Inhalation
(135) For chromium, default parameter values were adopted on absorption to blood from
the respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa
values for particulate forms of chromium are given in Table 13.1 [taken from Section 13 of

Publication 151 (ICRP, 2022)]

Table 13.1. Absorption parameter values for inhaled and ingested chromium.

Absorption parameter values”

Inhaled particulate materials f; s (d7) ss (A7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x10*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year S years 10 years 15 years adult
Trivalent state Cr(III) 0.1 0.01 0.01 0.01 0.01 0.01
Hexavalent state Cr(VI) 0.1 0.05 0.05 0.05 0.05 0.05

“It is assumed that the bound state can be neglected for chromium (i.e. f, = 0). The values of s; for Type F, M and
S forms of chromium (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of chromium applicable to the age-group of interest (e.g. 0.05 for
adults).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (e.g. 0.05 for adults).

13.1.2.  Ingestion
13.1.2.1. Adults

(136) As discussed in Publication 151 (ICRP, 2022), chromium is poorly absorbed from the
gastrointestinal tract. Ingested hexavalent chromium is absorbed to a slightly greater extent
than trivalent chromium. The reduction of Cr (VI) to Cr (III) by gastric juices, or by mixture
with orange juice or ascorbic acid thus appears to decrease its intestinal absorption.

(137) In Publications 30 and 72 (ICRP, 1980, 1995c¢), f1 was taken to be 0.01 for chromium
in the trivalent state and 0.1 for chromium in the hexavalent state. In Publication 151, fa values
of 0.01 and 0.05 were retained respectively for Cr(Ill) and Cr(VI). The same values are used
here for ingestion of chromium by adult members of the public.
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13.1.2.2. Children

(138) In a study by Sullivan et al. (1984), 2-day old rats absorbed about ten times more
Cr(III) chloride than adults (0.1 and 1.2% absorption respectively). Assuming the same age-
dependent ratio in humans leads to the adoption of an fa = 0.1 for ingestion of trivalent
chromium by 3-month-old infants. Applying the approach of Publication 56 (ICRP, 1990), fa
= 0.1 is also used for ingestion of hexavalent chromium by infants. The adult values are used
for older children: fa = 0.01 for ingestion of Cr(II) and fa = 0.05 for ingestion of Cr(VI).

13.1.3. Systemic distribution, retention and excretion of chromium
13.1.3.1. Biokinetic data

(139) Chromium(III) is the most stable oxidation state of chromium and, in that form, is an
essential nutrient in humans and several non-human species (Hambidge and Baum, 1972;
Christensen et al., 1993; Mertz, 1993; Anderson, 1997). Chromium in other oxidation states
tends to be converted to the trivalent oxide in the environment and in biological systems. The
hexavalent form (Cr(VI)), which is the second most stable oxidation state, behaves differently
from Cr(III) in the body and is categorized as a chemical toxin and carcinogen. The different
behaviours and effects of Cr(VI) and Cr(III) in the body are associated with the fact that some
Cr(VI) compounds can cross cell membranes, while Cr(III) is blocked by the membrane.

(140) Postmortem measurements of chromium concentrations in 17 tissues of up to 68 adult
male subjects (Zhu et al., 2010) indicate a central total-body content of about 4 g chromium.
Based on median chromium concentrations in tissues and reference tissues masses, about 55%
of total-body chromium is contained in muscle and fat, 25% in bone, 4% in the liver, and 0.5%
in the kidneys.

(141) Doisy et al. (1971) studied the blood kinetics and excretion of intravenously
administered *'Cr(III) in seven normal subjects. The blood content dropped to roughly 40% of
the injected amount within a few minutes but decreased very slowly thereafter, with about 25%
retained in blood after 7 d. Excretion of >!Cr was primarily in urine.

(142) Sargent et al. (1979) measured the retention of intravenously administered >'Cr(III) in
five normal adult male humans. Total-body activity was measured externally for 8 mo, and
activity in blood was measured for 40-80 d post injection. Data fits indicated three components
of retention with mean half-times of 0.56 d (35%), 12.7 d (27%), and 192 d (38%). Blood
clearance, apparently excluding a rapid phase of removal immediately after injection, was
described in terms of four components of retention with mean half-times of 13 min, 6.3 h, 1.9
d, and 8.3 d.

(143) Lim et al. (1983) studied the behaviour of intravenously administered >'Cr(III) in three
normal subjects using external scanning and measurement of activity in plasma. Highest
activity concentrations were seen in the liver, spleen, and bone.

(144) Chromium has been used to measure the volume and lifetime of red blood cells (RBC)
in patients and normal subjects, based on tenacious retention of >'Cr(III) in RBC after passage
of intravenously administered >'Cr(VI) across RBC membranes and reduction of >'Cr(VI) to
SICr(1I1) within the RBC. Following administration of 3!Cr(VI) to normal subjects, the label
disappeared from blood with a biological half-time of about 30 d (Korst, 1968).

(145) Hiller and Leggett (2020) reviewed information on the biokinetics of Cr(Ill) and
Cr(VI) in human subjects (see above summaries) and laboratory animals (Hopkins, 1965;
Mertz et al., 1965; Sayato et al., 1980; Weber, 1983; O’Flaherty, 1996; Kerger et al.. 1997;
O’Flaherty et al., 2001). They proposed systemic models for both Cr(IIl) and Cr(VI). Parameter
values for Cr(Ill) were based mainly on results of biokinetic and autopsy studies involving
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1552 human subjects. Data for laboratory animals were used to fill gaps in the data for human
1553  subjects. Cr(IV) was assumed to be reduced to Cr(III) over a period of hours to days.

1554  13.1.3.2. Biokinetic model for systemic chromium

1555 (146) The biokinetic model for systemic Cr(III) proposed by Hiller and Leggett (2020) was
1556  applied in Publication 151 (2022) to intakes of chromium by workers and is adopted here for
1557  application to environmental intakes of chromium by all age groups. The structure of the model
1558  for Cr(III) is shown in Fig. 13.1. Transfer coefficients are listed in Table 13.2.
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1561  Fig. 13.1. Structure of the biokinetic model for systemic chromium.
1562
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1563  Table 13.2. Age-specific transfer coefficients for chromium.
Transfer coefficients (d™!)

Pathway 100d ly Sy 10y 15y Adult

Plasma 1 Plasma 2 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02
Plasma 1 UB content 4.80E+00 4.80E+00 4.80E+00 4.80E+00 4.80E+00 4.80E-+00
Plasma 2 Blood 1.00E+01  1.00E+01  1.00E+01  1.00E+01  1.00E+01  1.00E-+01
Plasma 2 RC content 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01
Plasma 2 Other 1 7.00E-01  7.00E-01  7.00E-01  7.00E-01  7.00E-01  7.00E-01
Plasma 2 Other 2 2.70E-02  2.70E-02  2.70E-02  2.70E-02  2.70E-02  2.70E-02
Plasma 2 Kidneys 1.50E-02  1.50E-02  1.50E-02  1.50E-02  1.50E-02  1.50E-02
Plasma 2 Liver 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01
Plasma 2 Trab surface  1.50E-02 1.25E-02  1.25E-02  1.25E-02  1.25E-02 1.00E-02
Plasma 2 Cort surface  1.50E-02 1.25E-02  1.25E-02  1.25E-02  1.25E-02 1.00E-02
Other 1 Plasma 1 2.50E-01  2.50E-01  2.50E-01  2.50E-01 2.50E-01  2.50E-01
Other 2 Plasma 1 5.00E-05  5.00E-05  5.00E-05  5.00E-05  5.00E-05  5.00E-05
Liver Plasma 1 1.00E-02  1.00E-02  1.00E-02 1.00E-02  1.00E-02  1.00E-02
Kidneys Plasma 1 7.00E-03  7.00E-03  7.00E-03  7.00E-03  7.00E-03  7.00E-03
Trab surface  Plasma 1 4.93E-04 493E-04 493E-04 493E-04 493E-04 4.93E-04
Cort surface  Plasma 1 8.21E-05 8.21E-05 8.21E-05 8.21E-05 8.21E-05 8.21E-05

1564  UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.
1565  13.1.3.3. Treatment of radioactive progeny

1566 (147) The treatment of radioactive progeny produced in systemic compartments after intake
1567  of a radioisotope of chromium is described in Section 13.2.3.3. of Publication 151 (ICRP,
1568  2022).

1569 13.2. Dosimetric data for chromium

1570  Table 13.3. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of
1571 5'Cr compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult

Inhaled particulate materials (1 pm AMAD aerosols)

Type F 1.4E-10 1.0E-10 5.2E-11 3.5E-11 2.4E-11 2.4E-11
Type M, default 1.7E-10 1.4E-10 7.3E-11 4.9E-11 3.5E-11 3.8E-11
Type S 2.0E-10 1.7E-10 9.0E-11 6.1E-11 4.3E-11 4.7E-11
Ingested materials

Trivalent state Cr(III) 9.6E-11 4.8E-11 2.7E-11 2.0E-11 1.4E-11 1.3E-11
Hexavalent state Cr(VI) 9.6E-11 6.2E-11 3.5E-11 2.5E-11 1.7E-11 1.7E-11

1572 AMAD, activity median acrodynamic diameter.
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14. MANGANESE (Z=25)

14.1. Routes of Intake
14.1.1. Inhalation

(148) For manganese, default parameter values were adopted on absorption to blood from
the respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa
values for particulate forms of manganese are given in Table 14.1 [taken from Section 14 of
Publication 151 (ICRP, 2022)].

Table 14.1. Absorption parameter values for inhaled and ingested manganese.
Absorption parameter values”

Inhaled particulate materials f; s (d7) 55 (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year S years 10 years 15 years adult
All compounds 0.3 0.05 0.05 0.05 0.05 0.05

“It is assumed that the bound state can be neglected for manganese (i.e. fi = 0). The values of s; for Type F, M and
S forms of manganese (30, 3 and 3 d~! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the f) value for ingested soluble forms of manganese applicable to the age-group of interest (e.g. 0.05 for
adults).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.05 for adults).

14.1.2.  Ingestion

(149) As discussed in Publication 151 (ICRP, 2022), the fractional absorption of manganese
averages around 3-5% in adults. It is under homoeostatic control and negatively correlated with
total dietary manganese and iron intakes. The absorption is higher from water than from food.
For all compounds of manganese, fi had been taken to be 0.1 in Publications 30 and 72 (ICRP,
1979a, 1995c¢). In Publication 151, the value of fa = 0.05 was applied to all chemical forms of
manganese at the workplace. The same value of fao = 0.05 is adopted here for all forms of
manganese ingested by adult members of the public.

14.1.2.1. Children

(150) Mena (1981) noted that manganese homeostasis is achieved via the bile (not by renal
excretion) and that most of Mn ingested with food is excreted unabsorbed. He reported, at an
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age of 10 d, a total body retention of 15.7% in premature children (32-34 weeks of gestation),
8% in normal newborns and 1 - 3% in adults. Assuming a similar ratio with the adult fa of 5%
would suggest fa about 25% for newborns. In another balance study by Dorner et al. (1989) in
young infants and preterm infants, the apparent availability of Mn was highest in breast-milk
(37% of intake) and lower in cow’s milk formulas (16 to 21% of intake). In rats, the absorption
decreased with age from 82 to 30% in 12-19 d old suckling (Keen et al. 1986). Consistently
with these data, a higher fa = 0.3 is adopted here for ingestion of manganese by 3-month-old
infants, while the adult value fa = 0.05 is used for older children.

14.1.3.  Systemic distribution, retention and excretion of manganese
14.1.3.1. Biokinetic data

(151) Manganese is an essential element, but excessive intake can result in adverse health
effects including progressive neurodegenerative damage with an associated motor dysfunction
syndrome similar to Parkinson’s disease. Dietary intake of manganese typically is about 2-6
mg d! for adult humans. The adult human body contains about 10-15 mg of manganese. The
body’s manganese is maintained at a nearly constant level by homeostatic controls involving
regulation of gastrointestinal uptake and intestinal secretions. High dietary manganese
enhances metabolism of manganese in the liver and increases secretion of systemic manganese
into the gastrointestinal contents (Andersen et al., 1999; Dorman et al., 2001). Inhaled
manganese initially bypasses the homeostatic control processes in the liver and becomes
largely bound to transferrin. In persons chronically exposed to elevated mass concentrations of
manganese in air, atypically high masses of manganese can accumulate in the brain and other
tissues due to delivery by transferrin receptors.

(152) Autopsy data for adult male humans who suffered accidental deaths indicate that
highest median concentrations of manganese in tissues, normalized to the concentration in liver,
decrease in the order liver (1.0) > pancreas, kidney (~0.65) > gastrointestinal tissues (0.35-
0.55) (Zhu et al., 2010). Lowest concentrations (0.02-0.05) were found in blood, fat, and skin.
Based on median concentrations in tissues and reference tissue masses, about 34% of the body
burden was contained in muscle, 24% in bone, 16% in liver, and 2% in kidneys.

(153) In laboratory animals, manganese tracers are rapidly removed from blood and initially
concentrate mainly in tissues rich in mitochondria such as liver, pancreas, and kidneys
(Chauncey et al., 1977; Dastur et al., 1971; Dorman et al., 2006; Kato, 1963). Brain, bone, and
muscle and other tissues gradually accumulate increasing portions of retained manganese
(Dastur et al., 1969, 1971; Furchner et al., 1966).

(154) Endogenous excretion of manganese is mainly in faeces and appears to arise mainly
from biliary secretion, but substantial amounts are also secreted into the gastrointestinal tract
in pancreatic juices and other intestinal fluids (Dorman et al., 2001; Mahoney and Small, 1968;
Maynard and Fink, 1956). Urinary excretion typically accounts for at most a few percent of
total excretion of manganese (Maynard and Fink, 1956; Mahoney and Small, 1968; Davidsson
et al. 1989.

(155) Most of the manganese in blood is contained in red blood cells (Milne et al., 1990).
The concentration of manganese in blood plasma typically is about 0.6-0.7 pg/L (Baruthio et
al., 1988; Versieck and Cornelis, 1980; Versieck et al., 1988). Reported concentrations in
whole blood of healthy adult subjects are typically on the order of 8-12 ug/L (Kristiansen et al.,
1997; Milne et al., 1990; Pleban and Pearson, 1979).

(156) Mena et al. (1967) observed total-body retention of intravenously injected **Mn in 8
healthy adult humans (4 of each sex, age range 20-30 y), in 14 current manganese miners in
good health (ages 23-60 y), and 10 former manganese miners with chronic manganese
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poisoning (ages 18-56 y). Total-body removal half-times were 35.5 + 8.4 d (mean + standard
deviation) in the control group, 12.5 = 2.3 d in the healthy miners, and 26.5 = 4.8 d in the
subjects with manganese poisoning.

(157) Mahoney and Small (1968) measured retention of intravenously injected **Mn in six
subjects including both sexes (age range 25-45 y) and studied factors affecting the rate of
biological removal of the tracer from the body. About 30% of the injected amount was removed
with a half-time of 4 d and 70% with a half-time of 39 d. Low manganese intake increased the
size of the slow component to 84% and the retention half-time to 90 d but had no effect on the
half-time of the fast component. Administration of a large mass of stable manganese two
months after the start of the study substantially increased the rate of elimination of *Mn.

(158) Davidsson et al. (1989) measured retention and excretion of >*Mn in 14 healthy adults
after its ingestion in infant formula. The mean biological half-time of absorbed activity over
the period 10-30 d post ingestion was 16.4 d with a range of 6-32 d. Following intravenous
administration of **Mn to two subjects, the turnover rate during days 10-30 corresponded to
biological half-times of 74 and 24 d, compared with 27 and 8 d, respectively, in the same
subjects following oral administration.

(159) Finley and coworkers (1994, 1999) studied the effects of gender and other factors on
absorption and retention of manganese in healthy adult human subjects. Retention data for
absorbed manganese for days 10-20 indicated mean whole-body biological half-times of about
15 d for men and 12 d for women. Data for days 19 to 70 indicated mean half-times of about
48 d for men and 34 d for women.

14.1.3.2. Biokinetic model for systemic manganese

(160) The biokinetic model for systemic manganese applied to workers in Publication 151
(2022) is applied here to adult members of the public. The same model is applied to preadult
ages except that manganese reaching a bone volume compartment is assumed to be removed
to blood at the reference age-specific rate of turnover of that bone type (ICRP, 2002).

(161) The model structure is shown in Fig. 14.1. Transfer coefficients are listed in Table
14.2.
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1684  Table 14.2. Age-specific transfer coefficients for manganese.
Transfer coefficients (d"')

Pathway 100d ly Sy 10y 15y Adult
Plasma Liver 1 3.00E+02  3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
Plasma Kidneys 5.00E+01  5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Plasma Pancreas 5.00E+01  5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Plasma UB content 2.00E+00  2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00
Plasma RC content 1.00E+01  1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+01
Plasma Other 1 3.92E+02 3.92E+02 3.92E+02 3.92E+02 3.92E+02 3.92E+02
Plasma Other 2 1.50E+02  1.50E+02 1.50E+02 1.50E+02 1.50E+02 1.50E+02
Plasma Other 3 4.00E+01  4.00E+01 4.00E+01 4.00E+01 4.00E+01 4.00E+01
Plasma Cort surface 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00
Plasma Trab surface 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00
Plasma Brain 1.00E+00  1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Plasma RBC 2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01  2.00E-01
Liver 1 SI content 1.39E-01 1.39E-01 1.39E-01 1.39E-01  1.39E-01  1.39E-01
Liver 1 Liver 2 5.55E-01 5.55E-01 5.55E-01 5.55E-01 5.55E-01 5.55E-01
Liver 2 Plasma 3.47E-01 347E-01 347E-01 3.47E-01 3.47E-01 3.47E-01
Kidneys Plasma 3.47E-01 347E-01 347E-01 3.47E-01 3.47E-01 3.47E-01
Pancreas Plasma 3.47E-01 3.47E-01 347E-01 347E-01 3.47E-01 3.47E-01
Pancreas SI content 3.47E-01 3.47E-01 347E-01 347E-01 3.47E-01 3.47E-01
Other 1 Plasma 3.33E+01  3.33E+01 3.33E+01 3.33E+01 3.33E+01 3.33E+01
Other 2 Plasma 3.47E-01 347E-01 347E-01 3.47E-01 3.47E-01 3.47E-01
Other 3 Plasma 1.73E-02 1.73E-02  1.73E-02 1.73E-02 1.73E-02 1.73E-02
Cort surface Plasma 1.72E-02 1.72E-02  1.72E-02  1.72E-02  1.72E-02  1.72E-02
Cort surface Cort volume 1.73E-04 1.73E-04 1.73E-04 1.73E-04 1.73E-04 1.73E-04
Trab surface Plasma 1.72E-02 1.72E-02  1.72E-02  1.72E-02  1.72E-02  1.72E-02
Trab surface Trab volume 1.73E-04 1.73E-04 1.73E-04 1.73E-04 1.73E-04 1.73E-04
Cort volume Plasma 8.22E-03  2.88E-03 1.53E-03 9.04E-04 5.21E-04 8.21E-05
Trab volume Plasma 8.22E-03  2.88E-03 1.81E-03 1.32E-03 9.59E-04 4.93E-04
Brain Plasma 4.62E-03  4.62E-03 4.62E-03 4.62E-03  4.62E-03  4.62E-03
RBC Plasma 8.33E-03 8.33E-03 8.33E-03  8.33E-03 8.33E-03  8.33E-03

1685 UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular; RBC, red blood cells; SI, small intestine.

1686  14.1.3.3. Treatment of radioactive progeny

1687 (162) The treatment of radioactive progeny produced in systemic compartments after intake
1688  of a radioisotope of manganese is described in Section 14.2.3.3. of Publication 151 (ICRP,
1689  2022).

1690
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1691 14.2. Dosimetric data for manganese

1692  Table 14.3. Committed effective dose coefficients (Sv Bq™!) for the inhalation or ingestion of
1693  >*Mn compounds.

Effective dose coefficients (Sv Bq™!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 6.3E-09 3.5E-09 1.9E-09 1.3E-09 9.0E-10 9.3E-10
Type M, default 7.7E-09 6.3E-09 3.8E-09 2.6E-09 1.9E-09 2.3E-09
Type S 1.5E-08 1.4E-08 8.6E-09 5.9E-09 4.7E-09 5.6E-09

Ingested materials
All compounds 6.9E-09 1.8E-09 1.0E-09 7.2E-10 5.1E-10 5.0E-10

1694  AMAD, activity median aerodynamic diameter.
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15. COPPER (Z=29)
15.1. Routes of Intake
15.1.1.  Inhalation
(163) For copper, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of copper are given in Table 15.1 [taken from Section 16 of Publication

151 (ICRP, 2022)].

Table 15.1. Absorption parameter values for inhaled and ingested copper.

Absorption parameter values”

Inhaled particulate materials f s (d7) ss (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 1 0.5 0.5 0.5 0.5 0.5

“It is assumed that the bound state can be neglected for copper (i.e. f, = 0). The values of s, for Type F, M and S
forms of copper (30, 3 and 3 d™' respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of copper applicable to the age-group of interest (e.g. 0.5 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.5 for adults).

15.1.2.  Ingestion
15.1.2.1. Adults

(164) The average fractional absorption of copper ranges from 12% to 60%, see Publication
151 (ICRP, 2022) for more details. In Publications 30, 72 and 151 (ICRP, 1981, 1995c¢, 2022),
the fractional absorption was taken to be 0.5 for all compounds of copper. In this publication,
the same value of fo = 0.5 is adopted for all chemical forms of copper ingested by adult
members of the public.

15.1.2.2. Children
(165) Consistently with the approach of Publication56 (ICRP, 1990), an fa = 1 is adopted

here for ingestion of all forms of copper by 3 month old infants and the adult value of 0.5 is
used for older children.
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15.1.3.  Systemic distribution, retention and excretion of copper
15.1.3.1. Biokinetic data

(166) Copper (Cu) is a functional component of several enzymes in the human body and is
necessary for normal iron metabolism and formation of red blood cells. The adult male human
body contains about 70-80 mg of copper (Cartwright and Wintrobe, 1964; Zhu et al., 2010).
Measured copper concentrations in postmortem tissues and in blood of living subjects indicate
the following approximate distribution of copper in an adult male: blood 5%, skeletal muscle
48%, liver 18%, bone 8%, and other tissue 21% (Zhu et al., 2010).

(167) Absorption of copper from the small intestine is inversely related to the level of copper
intake. Absorbed copper binds to two plasma proteins, albumin and transcuprein. Much of the
bound copper is rapidly deposited in the liver, the key organ regarding copper metabolism and
homeostasis. Most of the copper entering liver is incorporated into the enzyme ceruloplasmin,
which is released to blood and transferred to tissues (Cartwright and Wintrobe, 1964; Cromwell,
G. L., 1997; Linder and Hazegh-Azam, 1996; Turnland, 1998; Angelova et al., 2011; Osredkar
and Sustar, 2011).

(168) Copper has two stable isotopes, **Cu and **Cu, with natural abundances of 69.2% and
30.8%, respectively. Scott and Turnland (1994) investigated the biokinetics of copper in
healthy young adult male humans over a 90-day period in which the less abundant isotope *°Cu
was administered at different times. The time-dependent concentrations of ®*Cu were
determined in blood components. Observed changes in the ®°Cu concentrations were
interpreted in view of previously established characteristics of copper in the human body such
as the typical mass, distribution, and faecal and urinary excretion rates of copper in adult
humans and the roles of the liver in copper metabolism and storage. The data indicated that
plasma contained about 4% of total-body copper, with ceruloplasmin containing 56-68% of
plasma copper. The dietary copper level was judged to influence the flow rate from liver to
plasma and from plasma to tissues other than liver. The investigators developed a biokinetic
model depicting the observed behaviour of ®Cu in blood plasma and the inferred time-
dependent systemic distribution and excretion of ®Cu. First-order transfer rates between
compartments (or delay times, for two of the nine depicted transfers) were developed separately
for each subject as fits to subject-specific data. Separate transfer coefficients were developed
for oral intake and injection.

(169) Relative losses of copper along different excretion pathways were studied in dogs
(Cartwright and Wintrobe, 1964). The results indicated that about 80% of excretion of systemic
copper is due to biliary secretion into the small intestine, 16% is excreted after endogenous
secretion directly across the intestinal wall, and 4% is excreted in urine.

(170) Following administration of ®Cu as cupric acetate to rats, maximal activity
concentrations were reached quickly in the liver, kidney, and gastrointestinal tract (Owen,
1965). Other tissues showed a progressive accumulation of **Cu after the disappearance of
most of the non-ceruloplasmin **Cu from plasma and emergence of plasma ceruloplasmin %*Cu,
suggesting that ceruloplasmin may be the source of copper for tissues. The disappearance of
%4Cu from plasma tended to parallel that from the liver after 2 d.

(171) Dunn et al. (1991) developed a compartmental model of copper biokinetics in rats
based on measurements of intravenously administered **Cu in plasma, tissues, and excreta over
the first 3 d post injection. They interpreted the data in the context of a 16-compartment model
that included 2 plasma compartments representing ceruloplasmin copper (Cp) and all other
copper in plasma (NCp), 2 liver compartments, 2 compartments representing skin plus muscle
(S-M), 2 compartments representing intestinal tissue, 2 compartments representing remaining
tissue, and 6 compartments representing excretion pathways and excreta. Movement between
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compartments was described by first-order transfers. Skin and muscle were treated as a single
tissue because the data indicated virtually identical kinetics in these two tissues. The direct
observations together with the results of the compartmental analysis indicated the following
behaviour of ®*Cu. The injected activity entered the NCp fraction of plasma, cleared rapidly
into the liver and S-M, and was initially removed at a high rate from liver in bile. The plasma
content levelled out within the first hour, remained constant for about 10 h, and then began to
decline gradually. This was attributed to a decreasing content of activity in NCp, offset by an
increasing content in Cp. By 1 h post injection about 32% of the administered amount (after
correction for physical decay) had accumulated in the liver. Activity was lost from the liver at
a relatively high rate for a few hours and more slowly thereafter. Activity in S-M accounted
for about 25% of the administered amount at 2 h, decreased slightly to about 10 h post
administration, and then plateaued or slightly increased over the rest of the observation period,
indicating a relatively long component of copper retention. About 25% of the administered
amount was excreted in faeces in the first 24 h and about 45% by 72 h, apparently representing
mainly biliary secretion of the tracer.

15.1.3.2. Biokinetic model for systemic copper

(172) The biokinetic model for copper developed by Scott and Turnland (1994) was
modified for application to workers in Publication 151 (ICRP, 2022). The model structure
applied by those investigators was modified to depict the faecal and urinary excretion pathways
applied in this report series. The mean transfer rates developed by Scott and Turnland for
intravenous administration of ®*Cu during the period of adequate intake of copper were used as
a starting point. Two delays depicted in their model were replaced with first-order transfer
coefficients. The transfer rate from Liver 2 to Plasma 2 derived by Scott and Turnland was
increased moderately for consistency with the long-term distribution of copper as indicated by
autopsy data (Zhu et al., 2010). The transfer rate from Other to Plasma 1 was decreased to
reflect longer retention in soft tissues indicated by data of Dunn et al. (1991) and for
consistency with autopsy data.

(173) The biokinetic model for copper applied to workers in Publication 151 is applied in
this report to all age groups. The structure of the model used here is shown in Fig. 15.1. Transfer
coefficients are listed in Table 15.2.

Injected or

absorbed Cu Urine
Sl ,
content Liver Plasma uB
1 1 content
Colon
content
Liver Plasma Other
2 2
Faeces

Fig. 15.1. Structure of the biokinetic model for systemic copper. UB, urinary bladder; SI, small
intestine.
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1808  Table 15.2. Age-specific transfer coefficients for copper.

Transfer coefficients (d™!)

Pathway 100 d ly S5y 10y 15y Adult
Plasma 1 Liver 1 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01

Plasmal  UB content 1.40E-04 1.40E-04 1.40E-04 1.40E-04 1.40E-04 1.40E-04
Liver 1 SI content 1.90E+01 1.90E+01 1.90E+01 1.90E+01 1.90E+01 1.90E+01

Liver 1 Liver 2 2.00E+02  2.00E+02  2.00E+02  2.00E+02  2.00E+02  2.00E+02
Liver 2 Plasma 2 1.30E+00 1.30E+00 1.30E+00 1.30E+00 1.30E+00  1.30E+00
Plasma2  Other 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Other Plasma 1 3.00E-01 3.00E-01 3.00E-01 3.00E-01 3.00E-01 3.00E-01

1809  UB, urinary bladder; SI, small intestine.
1810  15.2. Dosimetric data for copper

1811  Table 15.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
1812 *Cu compounds.

Effective dose coefficients (Sv Bq™!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 um AMAD aerosols)
Type F 2.3E-10 1.5E-10 6.8E-11 4.8E-11 3.1E-11 2.6E-11
Type M, default 3.3E-10 2.4E-10 1.3E-10 9.0E-11 6.8E-11 5.9E-11
Type S 3.4E-10 2.5E-10 1.3E-10 9.5E-11 7.3E-11 6.4E-11

Ingested materials
All compounds 3.8E-10 2.3E-10 1.4E-10 9.8E-11 6.5E-11 5.4E-11

1813  AMAD, activity median aerodynamic diameter.
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16. GALLIUM (Z=31)

16.1. Routes of Intake
16.1.1. Inhalation

(174) For gallium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of gallium are given in Table 16.1 [taken from Section 17 of Publication
151 (ICRP, 2022)].

16.1.2.  Ingestion
16.1.2.1. Adults

(175) Gallium is poorly absorbed from the gastro-intestinal tract, see Publication 151 (ICRP,
2022) for more details. In Publications 30, 72 (ICRP, 1981, 1995¢) and /51, the fractional
absorption was taken to be 0.001 for all compounds of the element. In this publication, the
same value fa = 0.001 is applied to all forms of gallium ingested by adult members of the public.

16.1.2.2. Children

(176) Consistently with the approach of Publication56 (ICRP, 1990), an fa = 0.01 is adopted
here for 3 month old infants and the adult value of fa =107 is used for older children.

Table 16.1. Absorption parameter values for inhaled and ingested gallium.

Absorption parameter values”

Inhaled particulate materials £ s (dh ss (d7h
Default parameter values'

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 0.01 0.001 0.001 0.001 0.001 0.001

“It is assumed that the bound state can be neglected for gallium (i.e. f; = 0). The values of s; for Type F, M and S
forms of gallium (30, 3 and 3 d"! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of £; for the absorption type
and the fa value for ingested soluble forms of gallium applicable to the age-group of interest (e.g. 0.001 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.001 for adults).
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16.1.3.  Systemic distribution, retention and excretion of gallium
16.1.3.1. Biokinetic data

(177) Nearly all of the gallium in blood is in plasma, where it is mainly bound to the iron-
transport protein transferrin (Bernstein, 1998). Gallium has a strong affinity for growing and
remodelling bone (Bernstein, 1998). In growing bone gallium is concentrated in the
metaphysis, particularly the cartilaginous growth plate. It also accumulates on the endosteal
and periosteal surfaces of diaphyseal bone (Bockman et al, 1986, 1990) and in some soft tissues
including the liver, spleen, and kidneys (Bernstein, 1998).

(178) Clearance of gallium in blood can be described reasonably well as two phases of
removal with half-times of about 0.25 d and 7 d (Kriegel, 1984). Roughly a third of the amount
deposited in tissues is removed from the body over a relatively short period, mainly in urine,
and the remainder is removed relatively slowly in urine and faeces (Kriegel, 1984).

(179) Priest et al. (1995) studied the biokinetics of ’Ga (712 = 3.26 d) over a 21-d period
following its intravenous administration to a healthy adult male volunteer. Retention R(¢) in
blood at ¢ days post injection (¢ > 0.2), expressed as a percentage of the injected amount
corrected for decay, was described by the power function R(£)=10.5r%7°. Decay-corrected
urinary and faecal excretion over the first 13 d represented about 27% and 10%, respectively,
of administered activity.

(180) Nelson et al. (1972) measured activity concentrations in postmortem tissues of 23
patients administered ’Ga intravenously at various times before death. Highest mean
concentrations expressed as % kg™ were found in spleen (4.1), kidney cortex (3.8), adrenals
(3.8), bone marrow (3.6), liver (2.8), kidney (2.7), and bone (2.6). Some organs including the
kidneys showed a rapid decrease in activity from high early values but a later slow decrease of
retained activity. Considerable variation in tissue concentrations from patient to patient was
observed.

(181) Zhu et al. (2010) measured concentrations of gallium in 17 tissues obtained from
autopsies of up to 68 Chinese men from four areas of China. All subjects were considered
healthy until the time of sudden accidental death. Based on median gallium concentrations in
tissue and reference tissue masses, most of the total-body gallium was contained in fat (31%),
bone (25%), and muscle (23%).

16.1.3.2. Biokinetic model for systemic gallium

(182) The biokinetic model for systemic gallium applied to workers in Publication 151
(2022) is applied in this report to adult members of the public. In Publication 151, transfer
coefficients were based largely on data summarized above on the observed kinetics and
postmortem distribution of gallium in human subjects. Derivation of transfer coefficients
focused on data for relatively early times after administration, as radioisotopes of gallium
addressed by the ICRP have short half-lives (maximum, 3.26 d). For application to pre-adult
ages, the flow rates from blood to bone surface compartments are increased by 50% above the
values for adults, and the rate from blood to the fast-turnover soft-tissue compartment (Other
0) is decreased to yield the same total removal rate from blood at all ages.

(183) The structure of the biokinetic model for systemic gallium is shown in Fig. 16.1.
Transfer coefficients are listed in Table 16.2.
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1886  Fig. 16.1. Structure of the biokinetic model for systemic gallium.
1887

1888  Table 16.2. Age-specific transfer coefficients for gallium.

Transfer coefficients (d!)

Pathway 100 d ly S5y 10y 15y Adult
Blood RC content 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01
Blood Liver 3.00E-01  3.00E-01  3.00E-01  3.00E-01  3.00E-01  3.00E-01
Blood Kidneys 4.00E-01  4.00E-01  4.00E-01  4.00E-01  4.00E-01  4.00E-01
Blood Spleen 5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02
Blood Trab surface  7.50E-01 7.50E-01 7.50E-01 7.50E-01 7.50E-01  5.00E-01
Blood Cort surface  7.50E-01 7.50E-01 7.50E-01 7.50E-01 7.50E-01  5.00E-01
Blood Red marrow  2.50E-01  2.50E-01  2.50E-01  2.50E-01  2.50E-01  2.50E-01
Blood Muscle 2.00E-01  2.00E-01  2.00E-01  2.00E-01  2.00E-01  2.00E-01
Blood Pancreas 5.00E-03  5.00E-03  5.00E-03  5.00E-03  5.00E-03  5.00E-03
Blood Other 1 1.65E+00  1.65E+00  1.65E+00  1.65E+00 1.65E+00 2.15E+00
Blood Other 2 5.00E-01  5.00E-01  5.00E-01  5.00E-01  5.00E-01  5.00E-01
Liver Blood 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01
Kidneys UB content 1.39E+00  1.39E+00  1.39E+00  1.39E+00  1.39E+00  1.39E+00
Spleen Blood 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01
Trab surface  Blood 347E-01 3.47E-01 3.47E-01 3.47E-01 3.47E-01 3.47E-01
Cort surface  Blood 347E-01 347E-01 3.47E-01 3.47E-01 3.47E-01 3.47E-01
Red marrow  Blood 347E-01 347E-01 3.47E-01 3.47E-01 3.47E-01 3.47E-01
Muscle Blood 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01
Pancreas Blood 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01
Other 1 Blood 1.39E+00  1.39E+00 1.39E+00  1.39E+00 1.39E+00  1.39E+00
Other 2 Blood 1.90E-03  1.90E-03  1.90E-03  1.90E-03  1.90E-03  1.90E-03

1889 UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.
1890  16.1.3.3. Treatment of radioactive progeny

1891 (184) The treatment of radioactive progeny produced in systemic compartments after intake
1892  of aradioisotope of gallium is described in Section 17.2.3.3. of Publication 151 (ICRP, 2022).
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1893  16.2. Dosimetric data for gallium

1894  Table 16.3. Committed effective dose coefficients (Sv Bq™!) for the inhalation or ingestion of
1895  $’Ga compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 2.7E-10 2.0E-10 9.4E-11 6.2E-11 4.2E-11 3.9E-11
Type M, default 5.3E-10 4.0E-10 2.3E-10 1.6E-10 1.2E-10 1.2E-10
Type S 5.9E-10 4.5E-10 2.6E-10 1.8E-10 1.4E-10 1.3E-10

Ingested materials
All compounds 2.3E-10 2.0E-10 1.1E-10 8.2E-11 5.7E-11 5.4E-11

1896  AMAD, activity median aerodynamic diameter.
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17. GERMANIUM (Z=32)

17.1. Routes of Intake
17.1.1. Inhalation

(185) For germanium, default parameter values were adopted on absorption to blood from
the respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa
values for particulate forms of germanium are given in Table 17.1 [taken from Section 18 of
Publication 151 (ICRP, 2022)].

17.1.2.  Ingestion

(186) Dietary forms of germanium are well absorbed from the gastrointestinal tract of man,
see Publication 151 (ICRP, 2022) for details. In Publications 30, 72 and 151 (ICRP, 1981,
1995c¢, 2022), the fractional absorption was taken as 1 for all compounds of germanium. In this
publication, the value fa = 1 is also used for all chemical forms of germanium ingested by
members of the public of all ages.

Table 17.1. Absorption parameter values for inhaled and ingested germanium.

Absorption parameter values”

Inhaled particulate materials £ s (d7D) ss (d7h
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 1 1 1 1 1 1

“It is assumed that the bound state can be neglected for germanium (i.e. f, = 0). The values of s, for Type F, M and
S forms of germanium (30, 3 and 3 d~! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fy values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of germanium applicable to the age-group of interest (1).

Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (fa = 1).

17.1.3.  Systemic distribution, retention and excretion of germanium
17.1.3.1. Biokinetic data

(187) Germanium is located just below silicon in Group IVA of the period table. In trace

amounts, germanium mimics uptake and accumulation of silicon in laboratory animals. Mehard
and Volcani (1975) compared the behaviours of *'Si (T12 = 157 min) and %*Ge (271 d) in rats
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following intravenous (IV) or intraperitoneal (IP) administration of *!'Si(OH)4 and *Ge(OH)a.
Accumulation of *!Si and %®Ge in tissues increased for about 15-40 min, declined rapidly for
~30 min, and then declined more gradually. Faster depletion of ®Ge than 3!Si was indicated.
By 2 h after IV injection the concentration of ®Ge in liver was about 65% higher than that of
31Si. Concentrations of ®®Ge were measured in blood and 11 tissues at five times from 0.1-20 d
after IV injection. Highest concentrations (normalized to 1.0 for kidney at each time) were seen
in kidney (1.0), liver (0.29), and blood (0.19) at 0.1 d; kidney (1.0), spleen (0.31, and liver
(0.28) at 4 d; and spleen (2.0), kidney (1.0), and urinary bladder (0.15) at 20 d.

(188) The concentration of germanium was measured in 17 tissues obtained from autopsies
of up to 68 men from four areas of China and in blood of 10 volunteers from the same areas
(Zhu et al., 2010). Highest median concentrations were found in rib (89 pg kg™!) followed by
blood, liver, and spleen (~45 ng kg™! each); lung (33 pg kg™'); kidney (19 pg kg!); and thyroid
(18 pg kg). Concentrations in the range 4-13 ug kg' were found in gastrointestinal tract
tissues, skeletal muscle, heart, testes, thymus, fat, and skin. Based on median tissue
concentrations and reference masses of tissues, bone contained about 50% of total-body
germanium, blood 15%, liver 4.5%, kidney 0.4%, and other tissue 30%. The estimated total-
body content based on median tissue concentrations was 1.4 mg, which is roughly the typical
daily intake of germanium in food (Schauss, 1991; Scansetti, 1992). As germanium in food
appears to be nearly completely absorbed from the gut (Rosenfeld, 1954; Scansetti, 1992), this
suggests low systemic retention of germanium.

(189) During the early hours after parenteral administration of germanium compounds to
rats or mice (Rosenfeld, 1954; Durbin, 1960; Mehard and Volcani, 1975; Shinoga et al., 1989),
the concentration of germanium in the kidneys was much greater than in other tissues.
Germanium was rapidly excreted in urine. At 4 d after intravenous administration of "'Ge as
NaHGeOs to rats, cumulative excretion accounted for about 98.5% of the administered amount,
and the bone, liver, and kidney contents accounted for about 0.4%, 0.5%, and 1.1%,
respectively (Durbin, 1960). At 3 h after intraperitoneal administration of NaxGeOs to rats, the
concentration of Ge in the kidneys was 2-20 times that in 14 other examined tissues and fluids
(Rosenfeld, 1954). Germanium did not appear to be stored by any tissue after multiple weekly
doses (Rosenfeld, 1954).

(190) Velikyan et al. (2013) investigated the organ distribution of ®*Ge in rats through day
7 following intravenous administration of %GeCls. Activity was distributed somewhat
uniformly among tissues beyond a few hours. Excretion was rapid and primarily in urine. About
90% of the injected activity was eliminated in urine with half-time < 1 h. A second, slower
phase of retention was observed, with ~1.8% of the activity remaining in the animals after 1
wk. Velikyan and coworkers estimated absorbed doses to tissues for adult male and female
humans based on the observed residence times in rat tissues. Highest dose estimates for females,
expressed as uSv MBq!, were obtained for kidney (185), adrenals (83), liver (38), colon wall
(~20), red marrow (13), osteogenic cells (11), and spleen (11). Lowest dose estimates were
obtained for lungs (3.2), heart wall (2.6), muscle (2.0), pancreas (1.9), and brain (1.2). Dose
estimates for 10 other tissues were in the range 7-10 uSv MBq.

(191) Shinoga et al. (1989) studied uptake and retention of stable germanium in mice after
a single peroral administration of GeO; solution. Germanium concentrations in blood, stomach,
small intestine, and eight systemic soft tissues were measured from 1-24 h after administration.
The maximum concentration in blood and systemic tissues was reached within 1 h. The kidneys
showed the highest concentration from 1-24 h. The highest biological half-time was seen in
brain (6.3 h). The half-time in blood was 1.2 h and in soft tissues other than brain was in the
range 2.4-4.4 h. The area under the time-concentration curve, expressed as pg h g™!, decreased
in the order: kidney (51), liver (23), pancreas (13), blood and spleen (11), lung (10), heart (7),
testis (6), brain (1.5). At 24 h germanium was detectable only in kidney, liver, spleen, and brain.
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17.1.3.2. Biokinetic model for systemic germanium

(192) The biokinetic model for systemic germanium applied to workers in Publication 151
(2022) is applied in this report to adult members of the public. The basis for the model is
described in that report. The same model is applied to preadults except that increased rates of
loss from bone compartments are assigned to preadults, as the rate of removal from bone is
based on the bone turnover rate. The bone turnover rates applied in the model are reference
values given in Publication 89 (ICRP, 2002).

(193) The structure of the biokinetic model for systemic germanium used in this report is
shown in Fig. 17.1. Transfer coefficients are listed in Table 17.2.
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Fig. 17.1 Structure of the biokinetic model for systemic germanium.

Table 17.2. Age-specific transfer coefficients for germanium.

Transfer coefficients (d*')

Pathway 100 d ly Sy 10y 15y Adult
Blood Other 8.90E-01  8.90E-01 8.90E-01 8.90E-01 8.90E-01 8.90E-01
Blood Kidneys 2.00E-01  2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01
Blood Liver 4.00E-01  4.00E-01 4.00E-01 4.00E-01 4.00E-01 4.00E-01
Blood UB content  8.30E+00  8.30E+00  8.30E+00  8.30E+00  8.30E+00  8.30E+00
Blood RC content 1.00E-02  1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02
Blood Trab surface  1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01
Blood Cort suface 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01
Other Blood 3.00E-01  3.00E-01 3.00E-01 3.00E-01 3.00E-01 3.00E-01
Kidneys UB contemt  1.20E+00 1.20E+00  1.20E+00  1.20E+00  1.20E+00  1.20E+00
Liver Blood 9.00E-01  9.00E-01 9.00E-01 9.00E-01 9.00E-01 9.00E-01
Trab surface  Blood 3.00E-01  3.00E-01 3.00E-01 3.00E-01 3.00E-01 3.00E-01
Cort suface ~ Blood 3.00E-01  3.00E-01 3.00E-01 3.00E-01 3.00E-01 3.00E-01
Trab surface  Trab volume 1.50E-03  1.50E-03 1.50E-03 1.50E-03 1.50E-03 1.50E-03
Cortsuface ~ Cort volume 1.50E-03  1.50E-03 1.50E-03 1.50E-03 1.50E-03 1.50E-03
Trab volume Blood 8.22E-03  2.88E-03 1.81E-03 1.32E-03 9.59E-04  4.93E-04
Cort volume  Blood 8.22E-03  2.88E-03 1.53E-03  9.04E-04  5.21E-04  8.21E-05

UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.
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17.1.3.3. Treatment of radioactive progeny

(194) The treatment of radioactive progeny produced in systemic compartments after intake
of a radioisotope of germanium is described in Section 18.2.3.3. of Publication 151 (ICRP,

2022).

17.2. Dosimetric data for germanium

Table 17.3. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of

%Ge compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 um AMAD aerosols)
Type F 1.5E-09 1.0E-09 4.6E-10 3.2E-10 1.9E-10 1.4E-10
Type M, default 4.6E-08 4.1E-08 2.4E-08 1.6E-08 1.3E-08 1.3E-08
Type S 1.1E-07 1.0E-07 6.3E-08 4.2E-08 3.4E-08 3.5E-08
Ingested materials
All compounds 1.9E-09 1.4E-09 8.3E-10 5.3E-10 3.6E-10 2.9E-10

AMAD, activity median aerodynamic diameter.
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18. ARSENIC (Z=33)

18.1. Routes of Intake
18.1.1. Inhalation

(195) For arsenic, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of arsenic are given in Table 18.1 [taken from Section 19 of Publication
151 (ICRP, 2022)].

18.1.2.  Ingestion

(196) Water soluble forms of arsenic are mostly absorbed from the gut, while insoluble
forms appear to be less available for absorption, see Publication 151 (ICRP, 2022) for details.
Regarding organic forms, Buchet et al. (1981a) compared the urinary excretion of arsenic and
its speciation over 4 days after ingestion of sodium arsenite, monomethylarsonate (MMA) and
dimethylarsinate (DMA) by human volunteers. It represented 46, 78 and 75% of the ingested
arsenic quantity in the respective chemical forms. About 84% of arsenic ingested by an
individual as 0.1 mg/kg body weight of DMA (Marafante et al. 1987) was excreted in 48h-
urine. Juhasz et al. (2006, 2008) evaluated the oral bioavailability in swine of arsenic present
in rice either as organic DMA or inorganic sodium arsenate as 33 and 89% respectively; as
100% in mung beans and 50% in lettuce and chard grown using arsenic-contaminated water.

(197) Francesconi et al. (2002) monitored arsenic metabolites in human urine over 4 days
after ingestion of arsenic-containing carbohydrates (arsenosugars), observing that
approximately 80% of the ingested arsenic was excreted in urine. In a similar study, Raml et
al. (2009) observed a large variation from 4 to 95% of arsenic urinary excretion among 6
volunteers correlated with a range of different metabolites in urine and blood.

(198) Early studies of arsenic in seafood indicated that arsenobetaine was efficiently
absorbed and excreted unchanged (Chapman, 1926). Freeman et al. (1979) reported the urinary
excretion of 76% arsenic over 8 days after ingestion in fish by 6 volunteers. Luten et al. (1982)
showed that 69-85% of arsenic as organic arsenobetaine in ingested fish was excreted in urine
within five days by 8 human volunteers. Tam et al. (1982) followed urinary and faecal excretion
of arsenic in 15 healthy adult volunteers over 8 days after ingestion of arsenic-rich fish: 77%
of fish-arsenic was excreted in urine while only 0.33% was recovered in faeces, demonstrating
nearly complete absorption. Brown et al. (1990) administered "*As-labelled arsenobetaine with
fish to 6 volunteers and measured after one day a whole-body content of about half the ingested
74 As quantity, also suggesting nearly complete absorption.

(199) In Publications 30 and 72 (ICRP, 1981, 1995c) an f; of 0.5 was recommended for all
compounds of arsenic. In Publication 151, fa values of 1 and 0.3 were used for water soluble
compounds and for insoluble compounds, including and arsenic in soils, respectively. The same
values of fa = 1 for soluble arsenic forms, including arsenic in diet, and fa = 0.3 for insoluble
forms are adopted here for all ages.
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Table 18.1. Absorption parameter values for inhaled and ingested arsenic.

Absorption parameter values”

Inhaled particulate materials fe s (dh s (d7h
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3months 1 year 5 years 10 years 15 years adult
Water soluble compounds, 1 1 1 1 1 1
arsenic in diet

Water insoluble compounds 0.3 0.3 0.3 0.3 0.3 0.3

and arsenic in soil

“It is assumed that the bound state can be neglected for arsenic (i.e. f» = 0). The values of s; for Type F, M and S
forms of arsenic (30, 3 and 3 d~! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of arsenic applicable to the age-group of interest (1).

Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (fa = 1).

18.1.3. Systemic distribution, retention and excretion of arsenic
18.1.3.1. Biokinetic data

(200) Arsenic (As) exists primarily in the trivalent state in the earth’s crust but is largely
oxidized to pentavalent arsenic (As(V)) in soil and water (Mochizuki, 2019). Absorbed or
injected inorganic As(III) and As(V) initially have noticeably different systemic kinetics
(Vahter and Norin, 1980; Lindgren et al., 1982). A substantial portion of absorbed As(V) is
reduced to As(IIl) in the body (Vahter and Marafante, 1985; Vahter, 2002), resulting in more
similar distributions of the initially different forms over time.

(201) Mealey et al. (1959) summarized observations of the systemic behaviour of "As in
>100 patients administered "*As(III) intravenously for brain tumor localization. In four patients
followed up to 10 d, blood clearance C(¢) of "*As expressed as % dosage L' blood at ¢ hours (¢
> (.25), was described by a sum of three exponential terms: C(f) = 7.0e™!*¥ + 0.07¢70-02% +
0.015¢%0%% The activity concentration in red blood cells increased over time and was about 3
times the plasma concentration by 10 h post injection. Renal clearance of "*As was estimated
as 3.54 L plasma h'!. Cumulative urinary activity was in the range 18-30% of the administered
amount at 1 h post injection, 36-56% at 4 h, and 57-90% at 9 d. In a patient followed for 18 d,
urinary activity accounted for ~97% of the injected amount. Only small amounts were
recovered in faeces, e.g. 0.21% of the administered amount in one case during the first week,
and 1.3% in a second case over 17 d. The concentration of "*As in tissues was determined for
11 patients who died at times ranging from 1 h to 71 d after injection. In all cases the highest
concentrations were found in the liver and kidneys. These two tissues contained roughly 20%
and 10%, respectively, at 1 h after injection. The sequential data for the 11 cases indicated that
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roughly 90% or more of the activity retained in the kidneys at 1 h was removed with a half-
time of about 8 h, and the remainder declined with a half-time of 2-3 d. The indicated time-
dependent behaviour of "*As in the liver also suggested two components of retention, with half-
times of roughly 1 d for 90% or more of the retained activity and 2 wk for the remainder.

(202) Pomroy et al. (1980) studied the biokinetics of "*As(V) in six healthy adult male
subjects (ages 28-60 y) following its oral administration as arsenic acid. Total-body retention
was measured externally for periods up to 103 d, and losses in urine and faeces were measured
up to 7 d. The pooled measurements of total-body retention were fit by a sum of three
exponential terms indicating biological half-times of 2.1 d (65.9%), 9.5 d (30.4%), and 38.4 d
(3.7%). Cumulative urinary and faecal excretion of *As over the first 7 d represented on
average 62% and 6%, respectively, of the administered amount. The portions of faecal losses
representing unabsorbed and endogenously secreted activity could not be determined. The
excretion patterns are qualitatively consistent with findings of Mealey et al. (1959) for
intravenously injected "*As(III) in that most of the amount entering blood was largely excreted
in urine over the next few days. However, the initial urinary excretion rate was higher in the
subjects of Mealey et al.: 36-56% at 4 h, compared with 18-27% at 1 d observed by Pomroy et
al.

(203) Activity concentrations were measured in post-mortem tissues of an adult female
cancer patient who was administered "®As intravenously 20 h before death (Ducoff et al., 1948).
The highest concentration was found in the liver, followed by the kidneys. Normalized to a
concentration of 1.0 in liver, the concentrations decreased in the order: kidneys (0.64) > spleen,
heart, marrow, lymph nodes, stomach, pancreas, muscle, small intestine, and lung (0.23-0.35)
> adrenals, ovary, thyroid, and skin (0.14-0.18) > brain and femoral cortical bone (0.05).

(204) Zhu et al. (2010) reported medians and ranges of arsenic concentration in 17 tissues
collected at autopsy from up to 68 adult males from 4 regions of China, and in blood of 16
living subjects from the same regions. The highest median concentration was found in rib (102
ng kg wet weight), followed by thyroid (53 pg kg™!) and liver (41 pg kg!). Concentrations in
blood and the remaining 14 tissues were in the range 19-38 ug kg!. Based on the observed
median concentrations of arsenic in tissues and reference masses of tissues, about 38% of total-
body arsenic was contained in bone, 29% in muscle, 11% in fat, 5% in blood, 4% in skin, 3%
in liver, and 10% in remaining tissues.

(205) In biokinetic studies of inorganic arsenic in laboratory animals, the liver and kidneys
usually show high concentrations of arsenic soon after administration of either As(III) or As(V)
(Ducoff et al., 1948; Marafante et al., 1981; Lindgren et al., 1982). This is consistent with
findings for human subjects (Ducoff et al., 1948; Mealey et al., 1959).

(206) Lindgren et al. (1982) examined the systemic distribution of intravenously injected
74As as As(IIT) or As(V) in mice using whole-body autoradiography, external counting, and
measurement of activity in dissected tissues. Comparison of autoradiograms at 1 h indicated
higher uptake of As(IIl) in oral mucosa, stomach wall, and liver, and lower uptake in bone
compared with As(V). The relatively high skeletal accumulation of As(V) was attributed to
substitution of arsenate ions for the physiologically similar phosphate ions in bone crystal.
Comparisons at 24 h indicated similar distributions of activity administered in the different
forms except for higher skeletal uptake of activity administered as As(V).

18.1.3.2. Biokinetic model for systemic arsenic

(207) The biokinetic model for systemic arsenic applied in this report is the model applied
in Publication 151 (ICRP, 2022) to workers, except that activity reaching a bone volume
compartment is assumed here to be removed to blood at the reference age-specific rate of bone
turnover (ICRP, 2002). The model is assumed to apply to both As(Ill) and As(V). Where
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differences in the kinetics of these two forms were suggested by human or animal studies,
preference was given to data for As(V). The model formulated in Publication 151 was designed
for consistency of predictions with the central whole-body retention data determined in adult
human subjects in the study by Pomroy et al. (1980) and reasonable consistency with the early
systemic behaviour of inorganic arsenic in human subjects and laboratory animals. Reasonable
consistency with the long-term systemic distribution of arsenic in adult humans indicated by
autopsy data (Zhu et al., 2010) was also required. The model predicts high accumulation of
arsenic in the kidneys and liver soon after uptake to blood but removal of the preponderance of
accumulated arsenic from both organs over the next few days. Predicted long-term cumulative
urinary and faecal losses represent about 95 and 5% of total excretion of arsenic.

(208) The structure of the biokinetic model for systemic arsenic applied in this report is
shown in Fig. 18.1. Transfer coefficients are listed in Table 18.2.
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Fig. 18.1. Structure of the biokinetic model for systemic arsenic.
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Table 18.2. Age-specific transfer coefficients for arsenic.

Transfer coefficients (d™!)

Pathway 100 d ly S5y 10y 15y Adult
Plasma RBC 2.00E+00  2.00E+00 2.00E+00  2.00E+00  2.00E+00  2.00E+00
Plasma Other 1 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01
Plasma Other 2 1.52E+00  1.52E+00 1.52E+00 1.52E+00 1.52E+00  1.52E+00
Plasma Other 3 2.80E-01  2.80E-01  2.80E-01  2.80E-01 2.80E-01  2.80E-01
Plasma Liver 1 2.40E+00 2.40E+00 2.40E+00 2.40E+00 2.40E+00 2.40E+00
Plasma Kidneys 1 2.52E+00 2.52E+00 2.52E+00 2.52E+00 2.52E+00  2.52E+00
Plasma Kidneys 2 2.80E-01  2.80E-01  2.80E-01  2.80E-01  2.80E-01  2.80E-01
Plasma Cort surface  1.00E+00 1.00E+00  1.00E+00  1.00E+00  1.00E+00  1.00E+00
Plasma Trab surface  1.00E+00 1.00E+00  1.00E+00 1.00E+00  1.00E+00  1.00E-+00
Plasma UB content 8.40E+00 8.40E+00 8.40E+00 8.40E+00 8.40E+00 8.40E-+00
Plasma RC content 6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01
RBC Plasma 3.00E-01  3.00E-01  3.00E-01  3.00E-01  3.00E-01  3.00E-01
Other 1 Plasma 6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01
Other 2 Plasma 8.00E-02  8.00E-02  8.00E-02  8.00E-02  8.00E-02  8.00E-02
Other 3 Plasma 1.80E-02  1.80E-02  1.80E-02  1.80E-02  1.80E-02  1.80E-02
Liver 1 Blood 9.50E-01  9.50E-01  9.50E-01  9.50E-01  9.50E-01  9.50E-01
Liver 1 Liver 2 5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02
Liver 2 Plasma 7.00E-02  7.00E-02  7.00E-02  7.00E-02  7.00E-02  7.00E-02
Kidneys 1 UB content 5.00E+00 5.00E+00 5.00E+00  5.00E+00  5.00E+00  5.00E+00
Kidneys 2 Plasma 7.00E-01  7.00E-01  7.00E-01  7.00E-01  7.00E-01  7.00E-01
Cort surface  Plasma 6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01
Trab surface  Plasma 6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01
Cort surface  Cort volume  3.00E-03  3.00E-03  3.00E-03  3.00E-03  3.00E-03  3.00E-03
Trab surface  Trab volume  6.00E-03  6.00E-03  6.00E-03  6.00E-03  6.00E-03  6.00E-03
Cort volume  Plasma 8.22E-03  2.88E-03  1.53E-03  9.04E-04 5.21E-04 8.21E-05
Trab volume  Plasma 8.22E-03  2.88E-03  1.81E-03  1.32E-03  9.59E-04  4.93E-04

UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.

18.1.3.3. Treatment of radioactive progeny

(209) The treatment of radioactive progeny produced in systemic compartments after intake
of a radioisotope of arsenic is described in Section 19.2.3.3. of Publication 151 (ICRP, 2022).
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2144 18.2. Dosimetric data for arsenic

2145  Table 18.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of "6As
2146  compounds.

Effective dose coefficients (Sv Bq!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 1.9E-09 1.3E-09 5.7E-10 4.0E-10 2.3E-10 1.7E-10
Type M, default 3.1E-09 2.3E-09 1.1E-09 8.0E-10 5.4E-10 4.9E-10
Type S 3.3E-09 2.4E-09 1.2E-09 8.7E-10 6.0E-10 5.4E-10

Ingested materials
Water soluble compounds, 3.2E-09 2.4E-09 1.4E-09 9.5E-10 6.3E-10 4.9E-10
arsenic in diet
Water insoluble compounds  3.3E-09 2.5E-09 1.5E-09 1.0E-09 6.9E-10 5.7E-10
and arsenic in soil

2147  AMAD, activity median acrodynamic diameter.
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19. BROMINE (Z=35)

19.1. Routes of Intake
19.1.1. Inhalation

(210) For bromine, default parameter values were adopted for the absorption to blood from
the respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa
values for gas and vapour forms of bromine are given in Table 19.1 and for particulate forms
in Table 19.2 [both taken from Section 21 of Publication 151 (ICRP, 2022)]. By analogy with
the halogen iodine, considered in detail in Publication 137 (ICRP, 2017), default Type F is
recommended for particulate forms in the absence of specific information on which the
exposure material can be assigned to an absorption type.

(211) For bromine, and the other halogens, intakes could be in both particulate and gas and
vapour forms, and it is therefore assumed that inhaled bromine is 50% particulate and 50%
gas/vapour in the absence of information (ICRP, 2002b).

Table 19.1. Deposition and absorption for gas and vapour compounds of bromine.

Percentage deposited (%) Absorption’
Chemical Absorption from the
form/origin  Total ET; ET, BB bb Al Type alimentary tract, f4"!
Unspecified 100 0 20 10 20 50 F 1.0

ET), anterior nasal passage; ET», posterior nasal passage, pharynx and larynx; BB, bronchial; bb, bronchiolar; Al,
alveolar-interstitial.

“Percentage deposited refers to how much of the material in the inhaled air remains in the body after exhalation.
Almost all inhaled gas molecules contact airway surfaces but usually return to the air unless they dissolve in, or
react with, the surface lining. The default distribution between regions is assumed: 20% ET,, 10% BB, 20% bb,
and 50% Al

It is assumed that the bound state can be neglected for bromine (i.e. f, = 0).

‘For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of £; for the absorption type
and the fa value for ingested soluble forms of bromine applicable to the age-group of interest (1.0).

The value of f4 = 1.0 is applicable to all age-groups.

Table 19.2. Absorption parameter values for inhaled and ingested bromine.
Absorption parameter values”

Inhaled particulate materials £ s (d7h ss (d7h
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 1 1 1 1 1 1

"It is assumed that the bound state can be neglected for bromine (i.e. f» = 0). The values of s for Type F, M and S
forms of bromine (30, 3 and 3 d~! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of bromine applicable to the age-group of interest (1).
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Default Type F is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fj for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (fa = 1).

19.1.2. Ingestion

(212) After ingestion, bromine is completely absorbed in the gastrointestinal tract. In
Publications 30, 72 and 151 (ICRP, 1980, 1995c¢, 2022), the fractional absorption was taken to
be 1. In this publication, a fa = 1 is also used for all chemical forms of bromine ingested by
members of the public of any age.

19.1.3. Systemic distribution, retention and excretion of bromine
19.1.3.1. Biokinetic data

(213) The dominant form of bromine (Br) in the human body is inorganic bromide. The
systemic kinetics of bromide closely resembles that of chloride (Reid et al., 1956; Pavelka,
2004). Ingested bromide is rapidly and nearly completely absorbed to blood and largely cleared
from blood within a few minutes (Ray et al., 1952). It is distributed mainly in extracellular
fluids where it replaces part of the extracellular chloride, with the molar sum of chloride and
bromide remaining constant at about 110 mmol/L (Pavelka, 2004).

(214) The biological half-time of bromide in the human body is about 12 d (Séremark, 1960),
compared with an estimated half-time of 8-15 d for chloride (Ray et al., 1952). The biological
half-time of bromide or chloride in the body can be reduced considerably by elevated intake of
chloride and increased considerably by a salt-deficient diet.

19.1.3.2. Biokinetic model for systemic bromine

(215) The biokinetic model for systemic bromine applied in Publication 151 (ICRP, 2022)
is applied here to all age groups. The systemic behaviour of bromine is assumed to be the same
as that of chlorine. The relevant physiological forms of bromine and chlorine are assumed to
be bromide and chloride, respectively. The common biokinetic model for bromide and chloride
is based on the assumptions of rapid removal from blood (T2 = 5 min), a uniform distribution
in tissues, removal of 50% of absorbed bromide or chloride from the body in 12 d, and a urinary
to faecal excretion ratio of 100:1. These conditions are approximated, using a first-order
recycling model, with the transfer coefficients listed in Table 19.2.

Table 19.2. Age-specific transfer coefficients for bromine

Transfer coefficients (d')

Pathway 100 d ly S5y 10y 15y Adult
Blood  Other 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02

Blood  UB content 8.30E-01 8.30E-01 8.30E-01 8.30E-01 8.30E-01 8.30E-01

Blood  RC content 8.30E-03 8.30E-03 8.30E-03 8.30E-03 8.30E-03 8.30E-03

Other  Blood 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
UB, urinary bladder; RC, right colon.
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2216  19.1.3.3. Treatment of radioactive progeny

2217 (216) The treatment of radioactive progeny produced in systemic compartments after intake
2218  of'aradioisotope of bromine is described in Section 21.2.3.3. of Publication 151 (ICRP, 2022).

2219  19.2. Dosimetric data for bromine

2220  Table 19.3. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of
2221  "*Br compounds.

Effective dose coefficients (Sv Bq!)

Inhaled gases or vapours 3m ly Sy 10y 15y Adult
Unspecified 2.3E-09 1.6E-09 9.6E-10 6.2E-10 4.3E-10 3.9E-10

Inhaled particulate materials; (1 pm AMAD aerosols)

Type F, default 1.5E-09 1.0E-09 4.7E-10 3.3E-10 2.0E-10 1.6E-10
Type M 2.2E-09 1.6E-09 8.1E-10 5.8E-10 3.8E-10 3.5E-10
Type S 2.3E-09 1.7E-09 8.6E-10 6.2E-10 4.1E-10 3.9E-10

Ingested materials
All compounds 2.7E-09 2.0E-09 1.2E-09 8.0E-10 5.4E-10 4.5E-10

2222 AMAD, activity median acrodynamic diameter.
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20. RUBIDIUM (Z=37)

20.1. Routes of Intake
20.1.1. Inhalation

(217) For rubidium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of rubidium are given in Table 20.1 [taken from Section 22 of Publication
151 (ICRP, 2022)].

20.1.2.  Ingestion

(218) Ingested rubidium is almost completely absorbed from the gastrointestinal tract. In
Publications 30, 72 and 151 (ICRP, 1980, 1994a), the fractional absorption was taken as 1 for
all compounds of rubidium. In the present publication, the same value fa = 1 is used for all
chemical forms of rubidium ingested by members of the public of all ages.

Table 20.1. Absorption parameter values for inhaled and ingested rubidium.

Absorption parameter values”

Inhaled particulate materials f s (d7h) ss (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 1 1 1 1 1 1

“It is assumed that the bound state can be neglected for rubidium (i.e. f» = 0). The values of s; for Type F, M and
S forms of rubidium (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of rubidium applicable to the age-group of interest (1).

Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide (fa = 1).

20.1.3. Systemic distribution, retention and excretion of rubidium
20.1.3.1. Biokinetic data

(219) The alkali metal rubidium (Rb) is a physiological analogue of its neighboring alkali
metals potassium (K) and caesium (Cs) in the periodic table. Rb and Cs compete with K for
transport across cell membranes, with the rate of membrane transport generally decreasing in
the order K > Rb > Cs. Cell membranes typically discriminate moderately between K and Rb
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and to a greater extent between K and Cs (Relman, 1956; Sjodin, 1959; Kernan, 1969; Sheehan
and Renkin, 1972).

(220) Measurements of stable Rb and K concentrations in tissues and fluids of human
subjects indicate broadly similar distributions of these elements (Williams and Leggett, 1987;
Zhu et al., 2010). In adult male humans, 60% or more of each of these elements is contained in
skeletal muscle (Williams and Leggett, 1987; Zhu et al., 2010). Collected data for human
subjects indicate that, on average, urinary excretion accounts for about 75% of total excretion
of systemic Rb, compared with about 85% for systemic K (Leggett, 1983). Based on data for
human subjects, ages 12-83 y (Ray et al., 1955; Kilpatrick et al., 1956, Tyor and Eldridge,
1956), and rabbits (Kilpatrick et al., 1956) injected with “’K and #’Rb, the early (through day
3) biological half-time of K in the body was about two-thirds that of Rb (assuming urinary
losses were 85% and 75% of total losses for “’K and ®°Rb, respectively). This is consistent with
relative long-term half-times of K (30 d) and Rb (44 d) estimated for adults in Publication 30
(Part 1, 1979, pp. 11 and 27).

(221) Love et al. (1954) compared the distributions of stable K and 'Rb in 33 tissues or
fluids following intravenous administration of *Rb to dogs. The distributions were compared
in terms of a “relative Rb concentration” for individual tissues or fluids, intended to reflect the
relative levels of accumulation of circulating Rb and K in these pools. The relative Rb
concentration for a tissue or fluid was defined as the average ratio A:B for days 1, 3, and 7 post
injection, where A is the concentration ratio of **Rb to K in the tissue or fluid sample and B is
the analogous ratio for simultaneously sampled blood plasma. The relative rubidium ratio was
in the range 1.02-1.91 with mean 1.4 £ 0.23 (SD) for 29 of the 33 pools and less than 1.0 for
the other 4 (urine, 0.66; femur, 0.56; brain, 0.55; cerebrospinal fluid, 0.55).

(222) Lloyd et al. (1972, 1973) conducted a study of retention of simultaneously ingested
$Rb and *’Cs in 38 human subjects: 9 healthy male control subjects, ages 4-80 y; 5 healthy
female control subjects, ages 14-52 y; 7 females, ages 14-50 y, thought to be carriers of
Duchenne dystrophy or other muscle disease; and 14 males and 3 females, ages 5-62 y, with
Duchenne dystrophy or other muscle disease. Total-body retention was measured externally
for ~6 months for Rb and ~12 months for Cs. Total-body biological retention of each tracer
could be fit closely by a sum of 2-3 exponential terms representing different phases of retention,
or in some cases by a single exponential term. The biological half-time associated with the
“long-term” component of retention (or the only component of retention in some cases) varied
from several days to a few months, depending on age and state of health. Retention of the
tracers generally was considerably lower in subjects with muscle disease than in controls of
corresponding age or sex, particularly for Cs. In control subjects, retention of Rb initially was
higher than that of Cs but fell below that of Cs after several days in most adults; a few weeks
in subjects of age 10-19 y and in one adult; and 3 months in two 4-y-old boys, when little of
the ingested amount remained in the body. An “equivalent” biological half-time Q for each
tracer and subject was derived as the sum of component half-times weighted by the relative
component sizes (fractions) in the fitted exponential expression. The equivalent half-times for
Rb for control subjects generally decreased with decreasing age from mid-adulthood to age 4
y (Fig. 20.1). In control subjects the ratio Rb:Cs of the equivalent half-time in Rb to that in Cs
was near 0.5 in adults but increased with decreasing age in pre-adults and exceeded 1.0 in two
4-y-old males (Fig. 20.2).

(223) A physiologically based biokinetic model for systemic Rb in adults was proposed by
Leggett and Williams (1989). The model was built around a blood flow model depicting the
distribution of cardiac output to 12 tissue compartments. Additional compartments were added
to address transfer of Rb between plasma and red blood cells and between systemic pools and
gastrointestinal content. Biological removal was assumed to be in urine, faeces, and sweat.
Movement of Rb was depicted as a system of first-order processes. The transfer rate from
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plasma into a tissue T was estimated as the product of the plasma flow rate to that tissue and a
tissue-specific extraction fraction, Et. The transfer rate from tissue T to plasma was estimated
from the inflow rate and the relative contents of Rb in plasma and tissue T at equilibrium based
mainly on autopsy data for stable Rb and typical concentrations of Rb in plasma and red blood
cells. Transfer rates between plasma and red blood cells and between systemic compartments
and gastrointestinal contents were based on empirical data. Model predictions of the blood
clearance, uptake and loss by systemic tissues, total-body retention, and path-specific excretion
rates of Rb were shown to be consistent with observations for human subjects.
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Fig. 20.1. Equivalent biological half-times for ingested 3°Rb in healthy human subjects, ages
4-80 y (data of Lloyd et al., 1972, 1973).
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Fig. 20.2. Ratios Rb:Cs of equivalent biological half-times of ingested ®*Rb and '*’Cs in healthy
human subjects, ages 4-80 y (based on data of Lloyd et al., 1972, 1973).

20.1.3.2. Biokinetic model for systemic rubidium

(224) The biokinetic model for systemic Rb in workers used in Publication 151 (ICRP,
2022) is a simplification of the model of Leggett and Williams (1989) summarized above, with
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a structure (Fig. 20.3) more consistent with the structures of other systemic models applied in
this report series. The Rb model of Publication 151 depicts a central blood compartment
(plasma) in exchange with a set of peripheral tissue compartments representing specific tissues
and a tissue named “Other” representing all tissues and fluids not explicitly identified in the
model. Activity in Other is assumed to be uniformly distributed. In Publication 151 the transfer
coefficients were set for consistency with the original model regarding retention in the adult
male body and in individual tissues depicted explicitly in both models.

(225) The biokinetic model for systemic Rb applied to workers in Publication 151 (ICRP,
2022) is applied in this report to adult members of the public. The model is extended to pre-
adult ages by adjustment of transfer coefficients to reflect pertinent anatomical or physiological
changes during growth; age-specific total-body retention times of Rb measured by Lloyd et al.
(1972, 1973) in healthy children, adolescents, and adults; and the similarity in retention times
of Rb and Cs early in life as indicated by data of Lloyd and coworkers. The comparative data
of Rb and Cs is particularly useful for modeling the kinetics of Rb in infants and toddlers
because of the lack of biokinetic data for Rb but the existence of considerable data for Cs during
this period of life.

(226) The following modifications of the Rb model for workers used in Publication 151
(ICRP, 2022) are made for application to pre-adult ages:

(227) The transfer rate from plasma to skeletal muscle at ages 100d, 1y, 5y, and 10 y is
assumed to be 0.5, 0.5, 0.7, and 0.85, respectively, times the transfer rate for the adult based on
changes with age in muscle mass as a percentage of total-body mass.

(228) For infants and children through age 10 y, the transfer rates from plasma to bone
surface compartments are set at twice the value for the adult to reflect a high blood flow rate
to bone compared with adults.

(229) The transfer rate from plasma to the compartment Other is modified to maintain the
same outflow rate from plasma at all ages, that is, to balance the changes in transfer from
plasma to skeletal muscle and bone surface.

(230) The model is required to reproduce the following long-term half-times: 17, 19, 25, 31,
and 41 d for intake at age 100d, 1 y, 5y, 10y, and 15y, respectively. The long-term half-times
for intake at age 100 d and 1 y are the values applied in the systemic model for Cs described in
Part 1 of this series (ICRP, 2024). The application of these reasonably well supported long-
term half-times for Cs to the less studied element Rb is based on indications in the results of
the study of Lloyd et al. (1972, 1973) that long-term retention of Rb converges toward that of
Cs with decreasing age of the pre-adult subjects. The half-times for the other intake ages are
set to approximate the retention data for pre-adult controls in the study by Lloyd et al. (1972,
1973). All flow rates out of tissue compartments (Kidneys, Liver, Muscle, Cortical and
Trabecular bone surface, Red marrow, Other) in the model for adults are multiplied by the
following factors to approximate the assigned long-term half-times of Rb in pre-adults: 2.1 at
age 100d, 1.9 atagely, l.6atage Sy, 1.4atage 10y,and 1.1 atage 15y.
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2363  Fig. 20.3. Structure of the biokinetic model for systemic rubidium.
2364
2365  Table 20.2. Age-specific transfer coefficients for rubidium.

Transfer coefficients (d*')

Pathway 100 d ly Sy 10y 15y Adult
Blood RBC 6.00E+00 6.00E+00 6.00E+00 6.00E+00 6.00E+00 6.00E+00
Blood Kidneys 2.40E+02 2.40E+02 2.40E+02 240E+02 2.40E+02 2.40E+02
Blood Liver 1.53E+02 1.53E+02 1.53E+02 1.53E+02 1.53E+02 1.53E+02
Blood Muscle 1.28E+02 1.28E+02 1.79E+02 2.17E+02 2.55E+02 2.55E+02
Blood Trab surface 1.68E+01 1.68E+01 1.68E+01 1.68E+01 8.40E+00 8.40E+00
Blood C-bone-S surface 1.12E+01 1.12E+01 1.12E+01 1.12E+01 5.60E+00 5.60E+00
Blood Red marrow 1.40E+01 1.40E+01 1.40E+01 1.40E+01 1.40E+01 1.40E+01
Blood Other 5.14E+02 5.14E+02 4.63E+02 4.24E+02 4.00E+02 4.00E+02
Blood UB content 3.90E+00 3.90E+00 3.90E+00 3.90E+00 3.90E+00 3.90E+00
Blood RC content 1.20E+00 1.20E+00 1.20E+00 1.20E+00 1.20E+00 1.20E+00
Blood Excreta 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01  1.00E-01
RBC Blood 3.50E-01 3.50E-01 3.50E-01 3.50E-01 3.50E-01 3.50E-01
Kidneys Blood 2.52E+02 2.28E+02 1.92E+02 1.68E+02 1.32E+02 1.20E+02
Liver Blood 2.10E+01 1.90E+01 1.60E+01 1.40E+01 1.10E+01 9.98E-+00
Muscle Blood 2.39E+00 2.17E+00 1.82E+00 1.60E+00 1.25E+00 1.14E+00
Trab surface Blood 3.53E+00 3.19E+00 2.69E+00 2.35E+00 1.85E+00 1.68E+00
Cort surface  Blood 3.53E+00 3.19E+00 2.69E+00 2.35E+00 1.85E+00 1.68E+00
Red marrow  Blood 3.53E+00 3.19E+00 2.69E+00 2.35E+00 1.85E+00 1.68E+00
Other Blood 1.53E+01 1.39E+01 1.17E+01 1.02E+01 8.03E+00 7.30E+00

2366  RBC, red blood cells; UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.
2367  20.1.3.3. Treatment of radioactive progeny

2368 (231) The treatment of radioactive progeny produced in systemic compartments after intake
2369  ofaradioisotope of rubidium is described in Section 22.2.3.3. of Publication 151 (ICRP, 2022).
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2370  20.2. Dosimetric data for rubidium

2371  Table 20.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
2372 3Rb compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult

Inhaled particulate materials; (1 pm AMAD aerosols)

Type F 2.7E-09 2.1E-09 1.3E-09 9.3E-10 7.1E-10 7.0E-10
Type M, default 3.6E-09 3.0E-09 1.8E-09 1.2E-09 9.2E-10 1.0E-09
Type S 5.1E-09 4.4E-09 2.6E-09 1.8E-09 1.3E-09 1.5E-09
Ingested materials

All compounds 5.2E-09 4.0E-09 2.8E-09 2.0E-09 1.7E-09 1.6E-09

2373  AMAD, activity median acrodynamic diameter.

2374
2375  Table 20.4. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of
2376  3“Rb compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult

Inhaled particulate materials; (1 um AMAD aerosols)

Type F 5.9E-09 4.4E-09 2.3E-09 1.6E-09 1.1E-09 1.0E-09
Type M, default 7.5E-09 6.2E-09 3.4E-09 2.3E-09 1.7E-09 1.8E-09
Type S 8.9E-09 7.4E-09 4.2E-09 2.9E-09 2.1E-09 2.3E-09
Ingested materials

All compounds 1.1E-08 8.4E-09 5.2E-09 3.4E-09 2.6E-09 2.4E-09

2377  AMAD, activity median aerodynamic diameter.

2378
2379  Table 20.5. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of
2380  86Rb compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials; (1 pm AMAD aerosols)
Type F 8.4E-09 6.1E-09 2.7E-09 1.6E-09 9.0E-10 7.3E-10
Type M, default 1.2E-08 9.6E-09 5.2E-09 3.4E-09 2.6E-09 2.5E-09
Type S 1.4E-08 1.1E-08 6.3E-09 4.2E-09 3.2E-09 3.1E-09

Ingested materials
All compounds 1.6E-08 1.1E-08 5.9E-09 3.4E-09 2.2E-09 1.7E-09

2381  AMAD, activity median acrodynamic diameter.
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21. RHODIUM (Z=45)

21.1. Routes of Intake
21.1.1. Inhalation

(232) For rhodium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of rhodium are given in Table 21.1 [taken from Section 23 of Publication
151 (ICRP, 2022)].

21.1.2.  Ingestion
21.1.2.1. Adults

(233) There appears to be no information concerning the uptake of rhodium from the
gastrointestinal tract. Based on chemical analogy with ruthenium, the fractional absorption was
taken to be 0.05 for all rhodium compounds in Publications 30, 72 and 151 (ICRP, 1980, 1995c,
2022). In this publication, fa = 0.05 is also used for all forms of rhodium ingested by adult
members of the public.

21.1.2.2. Children

(234) Consistently with the approach of Publication56 (ICRP, 1990), an f4 = 0.1 is adopted
here for ingestion of all forms of rhodium by 3 month old infants and the adult value of 0.05 is
used for older children.

Table 21.1. Absorption parameter values for inhaled and ingested rhodium.

Absorption parameter values”

Inhaled particulate materials £ s (dh ss (d7h
Default parameter values'

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 0.1 0.05 0.05 0.05 0.05 0.05

“It is assumed that the bound state can be neglected for rhodium (i.e. f, = 0). The values of s, for Type F, M and S
forms of thodium (30, 3 and 3 d! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of rhodium applicable to the age-group of interest (e.g. 0.05 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.05 for adults).

93



2413

2414

2415
2416
2417
2418
2419
2420
2421
2422

2423

2424
2425
2426
2427
2428
2429
2430
2431
2432
2433

2434
2435

2436

I‘Ri DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

21.1.3. Systemic distribution, retention and excretion of rhodium
21.1.3.1. Biokinetic data

(235) Rhodium (Rh) is a member of the chemical family called the platinum group, which
also includes platinum, iridium, ruthenium, palladium, and osmium. Biokinetic studies indicate
broadly similar systemic behaviour across the platinum group (Durbin et al., 1957; Durbin,
1960).

(236) Durbin et al. (1957) summarized results of studies of rhodium in rats following
administration of carrier-free 'Rh. At 18 d after intramuscular injection about 46% had been
eliminated in urine and 28% in faeces. Throughout the study the highest concentrations of
activity were found in kidney, spleen, lymph glands, and skin.

21.1.3.2. Biokinetic model for systemic rhodium

(237) Due to the sparsity of biokinetic data for rhodium, the biokinetics of the adjacent
platinum group member ruthenium in the period table has been applied to rhodium in previous
ICRP reports on occupational or public intake of radionuclides (ICRP, 1980, 1994, 1996, 2022).
The biokinetic model for systemic ruthenium described in Part 1 of this series of reports (ICRP,
2024) is applied in this report to rhodium.

(238) The model structure for rhodium is shown in Fig. 21.1. Transfer coefficients are listed
in Table 21.2. These transfer coefficients are independent of age except that the ICRP’s generic
age-specific bone turnover rates are assigned to transfers from bone volume compartments to
blood.
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Fig. 21.1. Structure of the biokinetic model for systemic rhodium. SI, small intestine.
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Table 21.2. Age-specific transfer coefficients for rhodium.

Transfer coefficients (d')

Pathway 100d ly S5y 10y 15y Adult
Blood SI content 3.00E+00  3.00E+00 3.00E+00  3.00E+00  3.00E+00  3.00E+00
Blood UB content 1.70E+01  1.70E+01 1.70E+01 1.70E+01 1.70E+01 1.70E+01
Blood Liver 1 1.20E+01  1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01
Blood Kidneys 1 7.76E+00  7.76E+00  7.76E+00  7.76E+00  7.76E+00  7.76E+00
Blood Kidneys 2 2.40E-01  2.40E-01 2.40E-01 240E-01 2.40E-01 2.40E-01
Blood Blood 2 2.70E+01 2.70E+01 2.70E+01 2.70E+01 2.70E+01  2.70E+01
Blood Other 1 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Blood Other 2 5.00E+00  5.00E+00  5.00E+00 5.00E+00  5.00E+00  5.00E+00
Blood Other 3 5.00E+00  5.00E+00  5.00E+00 5.00E+00  5.00E+00  5.00E+00
Blood Cort surface  2.00E+00  2.00E+00 2.00E+00  2.00E+00  2.00E+00  2.00E+00
Blood Trab surface ~ 6.00E+00  6.00E+00 6.00E+00  6.00E+00  6.00E+00  6.00E+00
Blood 2 Blood 6.93E-01 6.93E-01 6.93E-01 6.93E-01 6.93E-01 6.93E-01
Liver 1 Blood 9.70E-02  9.70E-02  9.70E-02  9.70E-02  9.70E-02  9.70E-02
Liver 1 SI content 347E-02  3.47E-02  3.47E-02 3.47E-02 3.47E-02 3.47E-02
Liver 1 Liver 2 6.93E-03  6.93E-03  6.93E-03  6.93E-03  6.93E-03  6.93E-03
Liver 2 Blood 3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03
Kidneys 1 UB content 1.39E-01  1.39E-01 1.39E-01  1.39E-01  1.39E-01  1.39E-01
Kidneys 2 Blood 3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03
Other 1 Blood 9.90E-02  9.90E-02  9.90E-02  9.90E-02  9.90E-02  9.90E-02
Other 2 Blood 231E-02  2.31E-02  2.31E-02 2.31E-02 2.31E-02 2.31E-02
Other 3 Blood 9.50E-04  9.50E-04  9.50E-04 9.50E-04 9.50E-04  9.50E-04
Cort surface  Blood 7.92E-02  7.92E-02  7.92E-02  7.92E-02  7.92E-02  7.92E-02
Trab surface ~ Blood 7.92E-02  7.92E-02  7.92E-02  7.92E-02  7.92E-02  7.92E-02
Cort surface  Cort volume  1.98E-02  1.98E-02  1.98E-02 1.98E-02  1.98E-02  1.98E-02
Trab surface  Trab volume 1.98E-02  1.98E-02  1.98E-02 1.98E-02  1.98E-02  1.98E-02
Cort volume  Blood 822E-03  2.88E-03  1.53E-03  9.04E-04 5.21E-04  8.21E-05
Trab volume  Blood 822E-03  2.88E-03  1.81E-03  1.32E-03  9.59E-04  4.93E-04

UB, urinary bladder; SI, small intestine; Cort, cortical; Trab, trabecular.

21.1.3.3. Treatment of radioactive progeny

(239) The treatment of radioactive progeny produced in systemic compartments after intake
of a radioisotope of thodium is described in Section 23.2.3.3. of Publication 151 (ICRP, 2022).
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2443  21.2. Dosimetric data for rhodium

2444  Table 21.3. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of
2445  1°'Rh compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials; (1 pm AMAD aerosols)
Type F 4.3E-09 3.6E-09 2.1E-09 1.4E-09 1.1E-09 1.1E-09
Type M, default 6.3E-09 5.6E-09 3.3E-09 2.2E-09 1.7E-09 1.9E-09
Type S 1.9E-08 1.8E-08 1.2E-08 8.3E-09 7.3E-09 8.0E-09

Ingested materials
All compounds 2.3E-09 1.3E-09 7.6E-10 5.2E-10 3.9E-10 3.8E-10

2446  AMAD, activity median aerodynamic diameter.
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22. PALLADIUM (Z=46)

22.1. Routes of Intake
22.1.1. Inhalation

(240) For palladium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of palladium are given in Table 22.1 [taken from Section 24 of Publication
151 (ICRP, 2022)].

22.1.2.  Ingestion
22.1.2.1. Adults

(241) Palladium is poorly absorbed from the gastrointestinal tract. In Publications 30, 72
and 151 (ICRP, 1981, 1995¢c, 2022) the fractional absorption was taken to be 5 x 107 for all
compounds of the element. In this publication the value of fo = 5 x 107 is also used for all forms
of palladium ingested by adult members of the public.

22.1.2.2. Children

(242) The fractional absorption from the gastrointestinal tract of palladium, administered as
the chloride, appears to be ten times higher (about 5%) in suckling rats than in adult rats (less
than 5 x 107*) (Moore et al., 1974, 1975b). Consistently with the approach of Publication56
(ICRP, 1990), an fa = 0.05 is adopted here for ingestion of all forms of palladium by 3 month
old infants and the adult value of 0.005 is used for older children.

Table 22.1. Absorption parameter values for inhaled and ingested palladium.

Absorption parameter values”

Inhaled particulate materials £ s (d7) ss (d7h
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107™

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 0.05 0.005 0.005 0.005 0.005 0.005

“It is assumed that the bound state can be neglected for palladium (i.e. f, = 0). The values of s, for Type F, M and
S forms of palladium (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fy values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of palladium applicable to the age-group of interest (e.g. 0.005 for
adults).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).
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SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.005 for adults).

22.1.3.  Systemic distribution, retention and excretion of palladium
22.1.3.1. Biokinetic data

(243) Following intravenous administration of Nas!**PdCls, about 60% of intravenously
injected '*Pd was excreted in urine over the first 4 h, 71% after 1 d, and 76% after 7 d (after
correction for radioactive decay) (Durbin et al., 1957; Durbin, 1960). Fecal excretion
represented about 4% of the administered amount after 1 d and 13% after 7 d. At 1 d the liver,
kidneys, muscle, bone, and blood contained 8.6%, 8.4%, 1.3%, 1.0%, and 0.8%, respectively,
of the administered amount. At 7 d the liver contained about 4%, kidneys 5%, bone 0.2-0.3%,
and spleen 0.2% of the administered amount.

(244) Moore et al. (1974, 1975) investigated the biokinetics of *Pd in rats following
different modes of administration of '*PdCl,. At 1 d after oral intake, activity was detectable
only in the kidneys and liver. Intravenously injected '®*Pd initially was lost primarily in urine,
mainly in faeces from 2 d to 2 wk, and mainly in urine after 2 wk. Male rats excreted about
30% of intravenously injected '®*Pd during the first day. At 1 d after intravenous injection, the
highest concentrations were seen in the kidneys, followed by the spleen, liver, adrenal gland,
lung, and bone. About 20% of the intravenously injected amount was retained in the body after
40 d, and about 10% was retained after 76 days. At 104 d after intravenous injection the highest
concentrations of '*Pd were found in the spleen, kidneys, liver, lung, and bone.

(245) Ando and coworkers (1989, 1994) determined the distribution of '®*Pd in rats at 3, 24,
and 48 h after intravenous injection of !> PdCl,. Cumulative urinary excretion at 3 h represented
6.4% of injected '*’Ir. At all three observation times the highest concentration was found in
the kidneys: 20.2, 17.1, and 21.4% g™ at 3, 24, and 48 h, respectively, followed by liver (14.1,
9.9, and 9.9%/g, respectively.

(246) Ducoulombier-Crépineau et al. (2007) examined the transfer of palladium to systemic
tissues and milk following a single oral intake of PdCl. by lactating goats. The highest
concentration was found in the kidneys. Little palladium was transferred to milk.

22.1.3.2. Biokinetic model for systemic palladium

(247) The biokinetic model for systemic palladium applied to workers in Publication 151
(ICRP, 2022) is applied here to adult members of the public. The same model is applied to
preadult ages except that palladium reaching a bone volume compartment is assumed to be
removed to blood at the reference age-specific rate of turnover of that bone type (ICRP, 2002).

(248) The structure of the biokinetic model for systemic palladium is shown in Fig. 22.1.
Transfer coefficients for palladium are listed in Table 22.2.
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Fig. 22.1. Structure of the biokinetic model for systemic palladium. SI, small intestine.

Table 22.2. Age-specific transfer coefficients for palladium

Transfer coefficients (d')

Pathway 100 d ly S5y 10y 15y Adult

Blood 1 SI content 4.00E+00  4.00E+00  4.00E+00 4.00E+00 4.00E+00 4.00E+00
Blood 1 UB content 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01
Blood 1 Liver 1 1.20E+01  1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01
Blood 1 Kidneys 1 8.00E+00  8.00E+00  8.00E+00  8.00E+00  8.00E+00  8.00E+00
Blood 1 Kidneys 2 4.00E+00  4.00E+00  4.00E+00 4.00E+00 4.00E+00  4.00E+00
Blood 1 Blood 2 2.70E+01 2.70E+01 2.70E+01 2.70E+01 2.70E+01 2.70E+01
Blood 1 Other 1 1.00E+01  1.00E+01 1.00E+01 1.00E+01  1.00E+01 1.00E+01
Blood 1 Other 2 1.00E+01  1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+01
Blood 1 Other 3 1.00E+00  1.00E+00 1.00E+00  1.00E+00  1.00E+00  1.00E+00
Blood 1 Cort surface 1.00E+00  1.00E+00 1.00E+00  1.00E+00  1.00E+00  1.00E+00
Blood 1 Trab surface  3.00E+00 3.00E+00  3.00E+00  3.00E+00 3.00E+00  3.00E-+00
Blood 2 Blood 1 2.77E+00  2.77E+00 2.77E+00  2.77E+00 2.77E+00 2.77E+00
Liver 1 Blood 1 4.62E-02  4.62E-02  4.62E-02  4.62E-02  4.62E-02  4.62E-02
Liver 1 SI content 9.24E-02  9.24E-02  9.24E-02  9.24E-02  9.24E-02  9.24E-02
Liver 1 Liver 2 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01
Liver 2 Blood 1 1.39E-02  1.39E-02  1.39E-02  1.39E-02  1.39E-02  1.39E-02
Kidneys 1 UB content 2.77E-01  2.77E-01  2.77E-01  2.77E-01  2.77E-01  2.77E-01
Kidneys 2 Blood 1 1.39E-02  1.39E-02  1.39E-02 1.39E-02  1.39E-02  1.39E-02
Other 1 Blood 1 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01
Other 2 Blood 1 1.39E-02  1.39E-02  1.39E-02  1.39E-02  1.39E-02  1.39E-02
Other 3 Blood 1 1.90E-03  1.90E-03  1.90E-03  1.90E-03  1.90E-03  1.90E-03
Cort surface  Blood 1 3.70E-02  3.70E-02  3.70E-02  3.70E-02  3.70E-02  3.70E-02
Trab surface  Blood 1 3.70E-02  3.70E-02  3.70E-02  3.70E-02  3.70E-02  3.70E-02
Cort surface  Cort volume  9.24E-03  9.24E-03  9.24E-03  9.24E-03  9.24E-03  9.24E-03
Trab surface  Trab volume  9.24E-03  9.24E-03  9.24E-03  9.24E-03  9.24E-03  9.24E-03
Cort volume  Blood 1 8.22E-03  2.88E-03  1.53E-03  9.04E-04 5.21E-04 8.21E-05
Trab volume  Blood 1 8.22E-03  2.88E-03  1.81E-03  1.32E-03  9.59E-04  4.93E-04

UB, urinary bladder; SI, small intestine; Cort, cortical; Trab, trabecular.
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22.1.3.3. Treatment of radioactive progeny

(249) The treatment of radioactive progeny produced in systemic compartments after intake
of'aradioisotope of palladium is described in Section 24.2.3.3. of Publication 151 (ICRP, 2022).

22.2. Dosimetric data for palladium

Table 22.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of

183pd compounds.

Effective dose coefficients (Sv Bq!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials; (1 pm AMAD aerosols)
Type F 3.5E-10 2.4E-10 1.1E-10 6.8E-11 4.4E-11 3.7E-11
Type M, default 1.0E-09 7.9E-10 4.4E-10 2.9E-10 2.2E-10 2.0E-10
Type S 1.3E-09 9.8E-10 5.5E-10 3.6E-10 2.8E-10 2.6E-10
Ingested materials
All compounds 2.1E-10 1.4E-10 7.4E-11 5.3E-11 3.2E-11 2.5E-11

AMAD, activity median aerodynamic diameter.

Table 22.4. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of

197Pd compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials; (1 pm AMAD aerosols)
Type F 2.4E-10 1.7E-10 8.8E-11 5.2E-11 3.5E-11 3.1E-11
Type M, default 5.0E-10 4.4E-10 2.3E-10 1.4E-10 1.0E-10 9.2E-11
Type S 3.6E-09 3.6E-09 2.6E-09 2.0E-09 1.9E-09 1.9E-09
Ingested materials
All compounds 5.4E-11 4.0E-12 2.2E-12 1.3E-12 8.8E-13 7.4E-13

AMAD, activity median aecrodynamic diameter.
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23. CADMIUM (Z=48)

23.1. Routes of Intake
23.1.1. Inhalation

(250) Information is available on the behaviour of cadmium after deposition in the
respiratory tract from animal studies and limited empirical human data. For details see Section
26 of Publication 151, ICRP 2022. Absorption parameter values and types, and associated fa
values for particulate forms of cadmium are given in Table 23.1 [taken from Section 26 of
Publication 151 (ICRP, 2022)].

Table 23.1. Absorption parameter values for inhaled and ingested cadmium.

Absorption parameter values”

Inhaled particulate materials £ s (d7h ss (d7h
Default parameter values’

Absorption type  Assigned forms

F - 1 30 -

Mm$ Oxide, chloride, sulphide, carbonate, 0.2 3 0.005
telluride, all unspecified forms

S - 0.01 3 1x10™*

Ingested materials”

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years Adult
All compounds 0.5 0.05 0.05 0.05 0.05 0.05

“It is assumed that the bound state can be neglected for cadmium (i.e. f, = 0). The values of s, for Type F, M and
S forms of cadmium (30, 3 and 3 d! respectively) are the general default values.

fMaterials (e.g. oxide) are generally listed here where there is sufficient information to assign to a default
absorption type, but not to give specific parameter values [see Section 26 of Publication 151 (ICRP, 2022)].

*For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
(or specific value where given) and the fa value for ingested soluble forms of cadmium applicable to the age-
group of interest (e.g. 0.05 for adults).

SDefault Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

IActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fj for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.05 for adults).

23.1.2.  Ingestion
23.1.2.1. Adults

(251) From dietary balance studies, the average normal gastrointestinal absorption of
ingested cadmium in humans ranged from 3 to 7% (WHO, 2011a; ATSDR, 2012a). The Joint
Food and Agriculture Organization/World Health Organization of the United Nations Expert
Committee on Food Additives (JEFCA, 2001) considered the overall point estimate of 5% for
bioavailability to be appropriate. The bioavailability of cadmium from some foods in which it
is bound to phytates, metallothionein, and other proteins may be reduced (ATSDR, 2012a;
JECFA, 2001).
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(252) In Publications 30, 72 and 151 (ICRP, 1980, 1995c and 2022) a fractional absorption
of 0.05 was used. In this publication, the fa value of 0.05 is also recommended for ingestion of
cadmium by adult members of the public.

23.1.2.2. Children

(253) The absorption of cadmium in rats depends on age, with measured absorption
decreasing from 12 to 5 to 0.5% at 2 hours, 24 hours, and 6 weeks after birth, respectively
(Sasser and Jarboe 1977). Sasser and Jarboe (1980) also reported that absorption of cadmium
in the gastrointestinal tract of young guinea pigs was 20-fold higher than in adult guinea pigs.
Increases in absorption have also been observed in mice during gestation and lactation (ATSDR,
2012a).

(254) From these animal data, a 10 time increase in human infants vs. adult was assumed
here, leading to an fa = 0.5 that is adopted here for ingestion of all forms of cadmium by 3-
month-old infants. The adult value of 0.05 is used for older children.

23.1.3. Systemic distribution, retention and excretion of cadmium
23.1.3.1. Biokinetic data

(255) Cadmium is in Group IIB of the periodic table, below the chemically similar element
zinc (Zn). Cadmium is commonly found in zinc ores. Cadmium and zinc have the same valence
(2+) in their stable form, but zinc is more stable in its divalent state and, unlike cadmium, does
not undergo redox changes. Cadmium appears to have no essential physiological role but bears
some biokinetic and physiological resemblance to zinc. In the mammalian body, cadmium and
zinc bind to the same proteins and compete for uptake by many of the same cells, and cadmium
can replace zinc in several biological processes. The toxic effects of cadmium appear to result
in part from interactions with zinc at the stage of zinc biological function ((Cotzias et al., 1961;
Brzoska and Moniuszko-Jakonuik, 2001).

(256) Systemic cadmium enters the urinary bladder and intestines much more slowly than
zinc and hence has a much longer residence time than zinc in the body. A biological half-time
on the order of 25 y has been estimated for cadmium (ICRP, 1980; Thorne et al., 1986).

(257) Zhu et al. (2010) measured concentrations of cadmium in 17 tissues obtained from
autopsies of up to 68 Chinese men from four areas of China. All subjects were considered
healthy until the time of sudden accidental death. Based on median cadmium concentrations in
tissues and reference tissue masses, about 30% of total-body cadmium was contained in the
kidneys, 24% in liver, 12% in muscle, 11% in bone, 9% in lung, and 14% in other tissues and
fluids.

(258) The distribution of cadmium in laboratory animals resembles that found in humans,
with highest concentrations in the liver and kidneys. Similar concentrations are found in liver
and kidneys at early times, but during prolonged exposure the concentration in the kidneys
exceeds that in the liver except for very high exposure (ATSDR, 2012).

(259) The kidney is the primary target organ for chronic exposure to cadmium. Long-term
exposure to cadmium may result in various levels of kidney damage from minor tubular
dysfunction to severe kidney impairment. Absorbed cadmium is transported to the liver, where
it stimulates synthesis of metallothionein. Cadmium bound to metallothionein is subsequently
transported to the kidneys. A portion of the cadmium filtered by the kidneys and a portion of
cadmium stored in kidney tissue is excreted in urine. Over time urinary cadmium becomes
closely related to the kidney content (Friberg, 1984).

(260) Jérup et al. (1983) estimated the biological half-time of cadmium in blood based on
measurements over 10-13 y of blood cadmium in five persons with previous occupational
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exposure to cadmium. The collected data were fit by a bi-exponential function. The estimated
half-times ranged from 75-128 d for the short-term component and 7.4-16 y for the long-term
component.

23.1.3.2. Biokinetic model for systemic cadmium

(261) The biokinetic model for systemic cadmium applied in Publication 151 (ICRP, 2022)
to workers is applied here to adult members of the public. The transfer coefficients in the
cadmium model for workers were designed to reproduce the following information or
assumptions: the initial systemic distribution of cadmium as indicated by studies on laboratory
animals; a retention half-time of ~25 y in the total body; the long-term distribution of stable
cadmium in the body as indicated by results of a study of element contents in tissues of adult
males (Zhu et al. 2010); and typical steady-state contents of stable cadmium in total body,
blood, and urine of adult humans. Comparison of model predictions with the observed steady-
state contents of stable cadmium in tissues was based on a reference gastrointestinal absorption
fraction of 0.05 and a reference dietary intake of 15 pg Cd per day (ATSDR, 2012).

(262) By analogy with the age-specific treatment of zinc in Publication 130 (ICRP, 2016),
the model for cadmium in adults is modified as follows for application to pre-adult ages: (1)
the deposition fractions for trabecular and cortical bone surface are increased by 50% over the
adult value for all pre-adult ages, (2) the deposition fraction for the soft-tissue compartment
with the highest turnover rate (STO in Fig. 23.1) is reduced for pre-adult ages to balance the
increased deposition on bone surface at those ages, and (3) activity is assumed to be removed
from trabecular or cortical bone volume to blood at the age-specific rate of turnover of that
bone type (ICRP, 2002).

(263) The structure of the biokinetic model for systemic cadmium applied in this report is
shown in Fig. 23.1. Transfer coefficients are listed in Table 23.2.
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Fig. 23.1. Structure of the biokinetic model for systemic cadmium.

103



I‘Ri DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

2637  Table 23.2. Age-specific transfer coefficients for cadmium.
Transfer coefficients (d')

Pathway 100d ly S5y 10y 15y Adult

Plasma Liver 1.80E+02  1.80E+02 1.80E+02 1.80E+02 1.80E+02 1.80E+02
Plasma Kidneys 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01
Plasma Pancreas 9.00E+00  9.00E+00 9.00E+00  9.00E+00  9.00E+00  9.00E+00
Plasma Muscle 6.00E+00  6.00E+00 6.00E+00 6.00E+00  6.00E+00  6.00E+00
Plasma RBC 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01
Plasma Other 1 1.19E+02 1.19E+02 1.19E+02 1.19E+02 1.19E+02  1.20E+02
Plasma Other 2 9.45E+01 9.45E+01 9.45E+01 9.45E+01 9.45E+01  9.45E+01
Plasma UB content 1.50E+00 1.50E+00 1.50E+00 1.50E+00 1.50E+00  1.50E+00
Plasma RC content 1.50E+00 1.50E+00 1.50E+00 1.50E+00 1.50E+00  1.50E+00
Plasma Trab surface  6.75E-01  6.75E-01  6.75E-01  6.75E-01  6.75E-01  4.50E-01
Plasma Cort surface 1.35E+00 1.35E+00 1.35E+00 1.35E+00 1.35E+00 9.00E-01
Liver Plasma 1.80E-02  1.80E-02  1.80E-02  1.80E-02  1.80E-02  1.80E-02
Kidneys Plasma 8.00E-04  8.00E-04  8.00E-04 8.00E-04 8.00E-04 8.00E-04
Pancreas Plasma 1.80E-02  1.80E-02  1.80E-02  1.80E-02  1.80E-02  1.80E-02
Muscle Plasma 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03
RBC Plasma 8.33E-03  8.33E-03  8.33E-03  8.33E-03  8.33E-03  8.33E-03
Other 1 Plasma 5.00E-01  5.00E-01  5.00E-01  5.00E-01  5.00E-01  5.00E-01
Other 2 Plasma 1.70E-02  1.70E-02  1.70E-02  1.70E-02  1.70E-02  1.70E-02
Trab surface  Plasma 2.00E-04  2.00E-04 2.00E-04 2.00E-04 2.00E-04 2.00E-04
Cort surface ~ Plasma 2.00E-04  2.00E-04 2.00E-04 2.00E-04 2.00E-04 2.00E-04

Trab surface Trab volume 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05

Cort surface Cort volume 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05

Trab volume  Plasma 8.22E-03 2.88E-03 1.81E-03 1.32E-03 9.59E-04  4.93E-04

Cort volume  Plasma 8.22E-03 2.88E-03 1.53E-03 9.04E-04 5.21E-04 8.21E-05
2638  RBC, red blood cells; UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.

2639  23.1.3.3. Treatment of radioactive progeny

2640 (264) The treatment of radioactive progeny produced in systemic compartments after intake
2641  ofaradioisotope of cadmium is described in Section 26.2.3.3. of Publication 151 (ICRP, 2022).
2642
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2643  23.2. Dosimetric data for cadmium

2644  Table 23.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
2645  1%Cd compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials; (1 pm AMAD aerosols)
Type F 3.2E-08 1.7E-08 9.9E-09 6.4E-09 4.4E-09 4.2E-09
Type M (default), oxide, 1.6E-08 1.2E-08 6.9E-09 4.5E-09 3.5E-09 3.4E-09
chloride, sulphide,
carbonate, telluride, all
unspecified forms
Type S 1.8E-08 1.7E-08 9.7E-09 6.3E-09 5.0E-09 4.8E-09

Ingested materials
All compounds 4.5E-08 3.9E-09 2.4E-09 1.6E-09 1.1E-09 1.0E-09

2646  AMAD, activity median acrodynamic diameter.
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24. INDIUM (Z=49)

24.1. Routes of Intake
24.1.1. Inhalation

(265) For indium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of indium are given in Table 24.1 [taken from Section 27 of Publication
151 (ICRP, 2022)].

24.1.2.  Ingestion
24.1.2.1. Adults

(266) The fractional absorption of indium from the gastrointestinal tract appears to be less
than a few percent, see Publication 151 (ICRP, 2022) for details. fi was taken to be 0.02 for all
compounds of indium in Publications 30 and 72 (ICRP, 1980, 1995¢c). An fa = 0.005 was used
in Publication 151, acknowledging it could be even lower for insoluble compounds. The value
of fo = 0.005 is also adopted here for indium ingestion by adult members of the public.

24.1.2.2. Children

(267) Consistently with the approach of Publication56 (ICRP, 1990), an fa = 0.05 is adopted
here for ingestion of all forms of indium by 3 month old infants and the adult value of 0.005 is
used for older children.

Table 24.1. Absorption parameter values for inhaled and ingested indium.

Absorption parameter values”

Inhaled particulate materials £ s (dh ss (d7h
Default parameter values'

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 0.05 0.005 0.005 0.005 0.005 0.005

*It is assumed that the bound state can be neglected for indium (i.e. f; = 0). The values of s for Type F, M and S
forms of indium (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of indium applicable to the age-group of interest (e.g. 0.005 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.005 for adults).
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24.1.3. Systemic distribution, retention and excretion of indium
24.1.3.1. Biokinetic data

(268) Commonly studied chemical forms of indium bind with the iron-transport protein
transferrin in blood, resulting in an initial distribution resembling that of iron. As a central
estimate, transferrin-bound indium clears from human blood plasma with a half-time of ~10 h
(Goodwin et all., 1971; Simonsen et al., 2009). Uptake of indium by red blood cells has been
observed in dogs (Mclntyre et al., 1974) and rats (Jonsson, 1991). Results of human studies
indicate relatively high accumulation of indium in the liver and bone marrow (McNiel et al.,
1974; Sayle et al., 1982; Datz and Taylor, 1985; McNiel et al. (1974) found that neither the
retention nor the distribution of indium in the liver changed between 1 and 2 d post injection.
In studies on rats, mice, and hamsters, 11-14 % of the injected indium accumulated in the liver
(Castronovo et al. 1973; Mclntyre et al 1974; Jonsson 1991; Yamauchi et al. 1992) and was
gradually removed in faeces. About 10-12% of injected indium was retained in bone marrow
(Smith et al. 1960; Beamish and Brown, 1974; Mclntyre et al. 1974; Jeffcoat et al. 1978;
Jonsson 1991). Some indium is removed from the body in urine, but faecal excretion appears
to be the dominant excretion pathway. Indium is removed slowly from the human body.
Simonsen et al. (2009) estimated that only 1.8 £+ 1.3% of indium entering blood was excreted
over the first four days.

(269) The reader is referred to Andersson et al. (2017) for a more detailed description of the
systemic behaviour of indium in human subjects and laboratory animals.

24.1.3.2. Biokinetic model for systemic indium

(270) A biokinetic model for systemic indium developed by Andersson et al. (2017) was
adopted in Publication 151 (ICRP, 2022) for application to workers. The same model is applied
in this report to indium for all ages at intake.

(271) The model structure is shown in Fig. 24.1. Transfer coefficients are listed in Table
24.2.
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Fig. 24.1. The structure of the biokinetic model for systemic indium (from Andersson et al.,
2017). TF, transferrin; RBC, red blood cells; SI, small intestine.
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2709  Table 24.2. Age-specific transfer coefficients for indium.
Transfer coefficients (d™!)
Pathway 100d ly S5y 10y 15y Adult
Plasma TF 8.30E+01 8.30E+01 &8.30E+01 8.30E+01 8.30E+01 8.30E+01
Plasma RBC 4.15E-01 4.15E-01 4.15E-01 4.15E-01 4.15E-01 4.15E-01
RBC Plasma 5.54E-02  5.54E-02  5.54E-02 5.54E-02 5.54E-02  5.54E-02
TF Red marrow 1 3.16E-01  3.16E-01 3.16E-01 3.16E-01 3.16E-01  3.16E-01
TF Liver 1 2.53E-01 2.53E-01 2.53E-01 2.53E-01 2.53E-01 2.53E-01
TF Other 1 427E-01 4.27E-01 4.27E-01 4.27E-01 4.27E-01 4.27E-01
TF Other 2 5.86E-01 5.86E-01 5.86E-01 5.86E-01 5.86E-01  5.86E-01
Red marrow 1 TF 1.10E+00 1.10E+00 1.10E+00 1.10E+00 1.10E+00 1.10E+00
Red marrow 1 Red marrow 2 4.75E-01  4.75E-01 4.75E-01 4.75E-01 4.75E-01 4.75E-01
Red marrow 2 Red marrow 1 8.31E-03  8.31E-03  8.31E-03 8.31E-03 8.31E-03 8.31E-03
Liver 1 TF 4.75E-01 4.75E-01 4.75E-01 4.75E-01 4.75E-01 4.75E-01
Liver 1 SI content 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01
Liver 1 Liver 2 5.54E-01  5.54E-01 5.54E-01 5.54E-01 5.54E-01 5.54E-01
Liver 2 Liver 1 8.31E-03  8.31E-03 8.31E-03 8.31E-03 8.31E-03  8.31E-03
Other 1 Plasma 2.37E+00 2.37E+00 2.37E+00 2.37E+00 2.37E+00 2.37E+00
Other 2 Plasma 4.75E-03  4.75E-03 4.75E-03 4.75E-03  4.75E-03  4.75E-03
Plasma Kidneys 1.66E+00 1.66E+00 1.66E+00 1.66E+00 1.66E+00 1.66E+00
Kidneys Plasma 1.66E-02  1.66E-02 1.66E-02 1.66E-02 1.66E-02  1.66E-02
Kidneys UB content 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02
2710  TF, transferrin; RBC, red blood cells; SI, small intestine; UB, urinary bladder.
2711  24.1.3.3. Treatment of radioactive progeny
2712 (272) The treatment of radioactive progeny produced in systemic compartments after intake
2713  of aradioisotope of indium is described in Section 27.2.3.3. of Publication 151 (ICRP, 2022).
2714 24.2. Dosimetric data for indium
2715  Table 24.3. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of
2716  '"'In compounds.
Effective dose coefficients (Sv Bq!)
3m ly Sy 10y 15y Adult
Inhaled particulate materials; (1 um AMAD aerosols)
Type F 5.4E-10 4.1E-10 1.9E-10 1.4E-10 8.7E-11 8.5E-11
Type M, default 6.5E-10 5.1E-10 2.7E-10 1.9E-10 1.3E-10 1.3E-10
Type S 6.8E-10 5.4E-10 2.8E-10 2.0E-10 1.4E-10 1.4E-10
Ingested materials
All compounds 6.7E-10 5.7E-10 3.2E-10 2.3E-10 1.6E-10 1.5E-10
2717  AMAD, activity median acrodynamic diameter.
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25. TIN (Z=50)
25.1. Routes of Intake
25.1.1. Inhalation

(273) For tin, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of tin are given in Table 24.1 [taken from Section 28 of Publication 151
(ICRP, 2022)].

25.1.2.  Ingestion
25.1.2.1. Adults

(274) The absorption of dietary or inorganic tin from the gastrointestinal tract is small, see
Publication 151 (ICRP, 2022) for details. In Publications 30, 72 (ICRP, 1981, 1995c) and 151,
the fractional absorption was taken as 0.02 for all compounds of tin. In this publication, the
value of fa = 0.02 is also adopted for all chemical forms of tin ingested by adult members of
the public.

25.1.2.2. Children

(275) Consistently with the approach of Publication56 (ICRP, 1990), an fa = 0.04 is adopted
here for ingestion of all forms of cadmium by 3 month old infants and the adult value of 0.02
is used for older children.

Table 25.1. Absorption parameter values for inhaled and ingested tin.

Absorption parameter values”

Inhaled particulate materials £ s (dh ss (d7h
Default parameter values'

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 0.04 0.02 0.02 0.02 0.02 0.02

“It is assumed that the bound state can be neglected for tin (i.e. f, = 0). The values of s; for Type F, M and S forms
of tin (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of tin applicable to the age-group of interest (e.g. 0.02 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.02 for adults).
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25.1.3. Systemic distribution, retention and excretion of tin
25.1.3.1. Biokinetic data

(276) The distribution of tin in the adult human body has been estimated from its measured
concentration in tissues collected at autopsy, mainly from male subjects. Reported results vary
considerable regarding the level of tin in the body and the relative concentrations in tissues.
Zhu et al. (2010) reported the medians and ranges of concentrations of tin in 17 tissues of up
to 68 adult males. Highest median values were determined for lung (0.031 mg kg™ wet weight),
liver (0.022), rib (0.013), and kidneys (0.012). Concentrations in stomach, small intestine, large
intestine, heart, adrenals, testes, spleen, skin, fat, skeletal muscle, thyroid, pancreas, and
thymus were in the range 0.005-0.009 mg kg™!. The investigators estimated a central total-body
content of 0.51 mg. Based on median concentrations and reference masses of tissues, about
half of total-body tin was contained in muscle plus fat and 20-25% was in bone, assuming rib
is representative of bone. Garcia et al. (2001) estimated mean tissue concentrations for 78
subjects of 0.47 (mg kg™! wet weight) in bone, 0.27 in brain, 0.25 in kidney, 0.24 in lung, and
0.16 in liver. Chiba et al. (1991) estimated mean concentrations of 2.1 mg kg™ dry weight in
testes, 1.1 in liver, 0.83 in kidney cortex, 0.75 in heart, 0.45 in lung, and 0.61 in rib of 11-13
adult males. Hamilton et al. (1973) found highest concentrations in lymph nodes (1.5 mg kg
wet weight) and bone (1.1), followed by lungs (0.8), liver (0.4), and kidneys (0.2); relatively
low concentrations were found in muscle (0.07) and brain (0.06).

(277) Hiles (1974) studied the biokinetics of inorganic tin in rats following oral or
intravenous administration of '*Sn(Il) or ''*Sn(IV). About 2.85% and 0.64% of ''3Sn
administered orally as Sn(II) and Sn(IV), respectively, was absorbed to blood. At 48 d after
oral intake, the skeleton, liver, and kidneys contained about 1.0, 0.08, and 0.09%, respectively,
of 1*Sn administered as Sn(II), and 0.24, 0.02, and 0.02%, respectively, of !'*Sn administered
as Sn(IV), indicating similar systemic distributions of the absorbed activity for the two forms.
At 48 h after intravenous injection, the bone, liver, and kidneys contained about 35, 2.0, and
5.9%, respectively, of *Sn administered as Sn(Il), and 46, 0.2, and 5.3%, respectively, of ''*Sn
administered as Sn(IV).

(278) Furchner and Drake (1976) examined the behaviour of ''*Sn in mice, Sprague-Dawley
(S. D.) rats, African white-tailed rats (Mystromys), monkeys, and dogs following oral,
intraperitoneal (IP), or intravenous (IV) administration as ''*Sn(II) chloride. The IP injection
study involved only mice and rats. Mean total excretion over the first 3 d after [V injection was
about 25% for mice, 38% for Mystromys, 45% for S. D. rats, 39% for monkeys, and 69% for
dogs. Excretion over the first 3 d was primarily in urine, e.g., 84% of total excretion in monkeys
and 91% in dogs. Total-body retention following IV injection was measured for periods of 291
d for rats, 319 d for Mystromys, 325 d for dogs, 338 d for mice, and 469 d for monkeys.
Retention in each species could be described as a sum of four exponential terms. Retention was
broadly similar across species and showed no relation to body size. As an average over the five
studied species, the biological half-times of the four phases of retention for IV injection were
about 0.5 d (50%), 4.3 d (13%), 28 d (9%), and 510 d (28%). The mean long-term half-time
was about 760 d for mice, 580 d for Mystromys, 420 d for S. D. rats, 370 d for monkeys, and
430 d for dogs. The time-dependent distribution of systemic activity was measured in S. D. rats
at 10 times from 1-141 d post IP injection. Bone contained 69% of total-body activity at 1 d,
71-76% at 6-113 d, and 65% at 141 d; muscle contained 12-20% at 1-141 d; liver contained
2.4-5.9% at 1-141 d; and kidneys contained 3.5% at 1 d, gradually decreasing to ~1% at 85-
141 d.

110



2795

2796
2797
2798
2799
2800
2801
2802
2803
2804
2805

2806
2807

2808

I‘ni DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

25.1.3.2. Biokinetic model for systemic tin

(279) The biokinetic model for systemic tin applied in Publication 151 (ICRP, 2022) is
applied here to intake of tin at all ages. In that model, parameter values were set for reasonable
consistency with total-body retention of tin observed in monkeys over the early months after
acute input to blood, and with the early systemic distribution of tin observed in rats (Furchner
and Drake, 1976). Parameter values determining the long-term distribution of tin were set for
reasonable consistency with the central systemic distribution of tin indicated by results of an
autopsy study by Zhu et al. (2010).

(280) The structure of the biokinetic model for systemic tin applied in this report is shown
in Fig. 25.1. Transfer coefficients are listed in Table 25.2.
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Fig. 25.1. Structure of the biokinetic model for systemic tin.
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Table 25.2. Age-specific transfer coefficients for tin.

Transfer coefficients (d™!)

Pathway 100d ly Sy 10y 15y Adult

Blood UB content ~ 1.80E+00  1.80E+00  1.80E+00  1.80E+00  1.80E+00  1.80E+00
Blood RC content ~ 2.00E-01  2.00E-01  2.00E-01  2.00E-01  2.00E-01  2.00E-01
Blood Trab surface  6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01
Blood Cort surface  6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01
Blood Other 1 6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01  6.00E-01
Blood Other 2 1.00E+00  1.00E+00  1.00E+00  1.00E+00  1.00E+00  1.00E+00
Blood Liver 1 7.50E-02  7.50E-02  7.50E-02  7.50E-02  7.50E-02  7.50E-02
Blood Liver 2 2.50E-02  2.50E-02  2.50E-02  2.50E-02  2.50E-02  2.50E-02
Blood Kidneys 1 5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02
Blood Kidneys 2 5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02  5.00E-02
Trab surface  Blood 3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02
Cort surface  Blood 3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02
Trab surface  Trab volume 3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02
Cort surface  Cort volume 3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02  3.50E-02
Trab volume  Blood 3.50E-03  3.50E-03  3.50E-03  3.50E-03  3.50E-03  3.50E-03
Cort volume  Blood 3.50E-03  3.50E-03  3.50E-03  3.50E-03  3.50E-03  3.50E-03
Liver 1 Blood 1.16E-02  1.16E-02  1.16E-02  1.16E-02  1.16E-02  1.16E-02
Liver 2 Blood 7.70E-04  7.70E-04  7.70E-04  7.70E-04  7.70E-04  7.70E-04
Kidneys 1 UBcontent  1.39E-01  1.39E-01  1.39E-01  1.39E-01  1.39E-01  1.39E-01
Kidneys 2 Blood 1.16E-02  1.16E-02  1.16E-02  1.16E-02  1.16E-02  1.16E-02
Other 1 Blood 1.39E-01  1.39E-01  1.39E-01 1.39E-01 1.39E-01 1.39E-01
Other 2 Blood 3.50E-03  3.50E-03  3.50E-03  3.50E-03  3.50E-03  3.50E-03

UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.

25.1.3.3. Treatment of radioactive progeny

(281) The treatment of radioactive progeny produced in systemic compartments after intake
of a radioisotope of tin is described in Section 28.2.3.3. of Publication 151 (ICRP, 2022).

25.2. Dosimetric data for tin

Table 25.3. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of
138n compounds.

Effective dose coefficients (Sv Bqh)

3m ly Sy 10y 15y Adult
Inhaled particulate materials; (1 pm AMAD aerosols)
Type F 6.4E-09 5.0E-09 2.3E-09 1.3E-09 9.3E-10 7.7E-10
Type M, default 9.0E-09 7.8E-09 4.3E-09 2.8E-09 2.1E-09 2.1E-09
Type S 1.4E-08 1.2E-08 7.1E-09 4.7E-09 3.6E-09 3.6E-09
Ingested materials
All compounds 1.9E-09 1.1E-09 6.1E-10 4.1E-10 2.7E-10 2.4E-10

AMAD, activity median aerodynamic diameter.
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26. HAFNIUM (Z=72)

26.1. Routes of Intake
26.1.1. Inhalation

(282) For hafnium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of hafnium are given in Table 26.1 [taken from Section 29 of Publication
151 (ICRP, 2022)].

26.1.2.  Ingestion
26.1.2.1. Adults

(283) There do not appear to be any relevant data available on the absorption of hafnhium
from the gastrointestinal tract. In Publications 30, 68 and 151 (ICRP, 1981, 1994a, 2022) the
fractional absorption was taken to be 0.002 for all compounds of hafnium at the workplace
based on chemical analogy with zirconium. A higher value of fi = 0.01 was used in Publication
56 (ICRP, 1990) for ingestion of zirconium in diet by adult members of the public. The same
value of fao = 0.01 is adopted in this publication for ingestion of hafnium in diet; while the value
fa=0.002 is used for all other forms of hafhium ingested by adult members of the public.

26.1.2.2 Children

(284) Consistently with the approach of Publication56, an fa = 0.02 is adopted here for
ingestion of all forms of hafnium by 3-month-old infants and the adult values of fa = 0.01
(hafnium in diet) and fa = 0.002 (other forms) are used for older children.

Table 26.1. Absorption parameter values for inhaled and ingested hafnium.

Absorption parameter values”

Inhaled particulate materials £ s (dh ss (d7h
Default parameter values'

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
hafnium in diet 0.02 0.01 0.01 0.01 0.01 0.01
all other forms 0.02 0.002 0.002 0.002 0.002 0.002

“It is assumed that the bound state can be neglected for hafnium (i.e. f; = 0). The values of s for Type F, M and S
forms of hafnium (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of hafnium applicable to the age-group of interest (e.g. 0.002 for
adults).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).
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2849 SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
2850  to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for
2851  ingestion of the radionuclide applicable to the age-group of interest (e.g. 0.01 for adults).

2852  26.1.3. Systemic distribution, retention and excretion of hafnium
2853  26.1.3.1. Summary of biokinetic data

2854 (285) The chemical and physical properties of the Group IVB element Hf closely resemble
2855  those of the lighter IVB element zirconium. Comparisons of the behaviour of Hf and Zr in
2856  laboratory animals also indicate that they are close physiological analogues with virtually
2857  identical biokinetics (Leggett and Samuels, 2020).

2858 (286) Taylor and coworkers (1983, 1985) studied the kinetics of '8'Hf or !7>*18!Hf in rats,
2859  hamsters, and marmosets over 6 months post administration by different routes. Total-body
2860  retention over 150 d was similar for the three animal types following parenteral administration
2861  of Hf as a citrate complex. Detailed studies of the distribution of activity in the body were
2862  conducted for hamsters and rats. The skeleton was the largest repository for Hf, containing
2863  ~29% of intravenously administered Hf in rats at 14 d post injection and ~43% at 21 d post
2864  subcutaneous administration to hamsters. In rats, the liver content peaked at 6.5% at 7 d and
2865  declined to 1.2% at 168 d. In hamsters the liver content peaked at 5% at 1 d and declined to
2866  2.1% at 168 d. Limited tissue measurements on marmosets suggested a higher liver content
2867  than observed in rats and hamsters.

2868 (287) Ando and Ando (1986) studied the behaviour of '®'Hf and **Zr in tumor-bearing rats
2869  over 2 d after intravenous injection of '8'Hf chloride, *°Zr oxalate, and **Zr nitrate. The kinetics
2870  of Hf closely followed that of Zr in studied tissues other than liver and spleen. Higher
2871  accumulation of Hf than Zr in liver and spleen was attributed to formation of colloidal Hf in
2872  the injected solution and its removal from Blood 1 by phagocytic cells of liver and spleen.
2873 (288) At 4 d after IV administration of 18 1Hf as citrate to rats, the median concentration
2874  ratios liver:femur and kidney:femur were ~0.5 (MacDonald and Bahner, 1953). At 14 d after
2875 IV administration of 175+181Hf as citrate, the total body, liver, and skeleton contained ~71%,
2876  4.1%, and 29%, respectively, of the administered amount (Taylor et al., 1983). At 4 d after [V
2877  administration of 181Hf mandelate to rats, the median concentration ratios liver:femur and
2878  kidney:femur were ~6 and 1.4, respectively (MacDonald and Bahner, 1953). At 16 d after [V
2879  administration of 181Hf mandelate to rats, the total body, liver, and bone contained ~93%, 45%,
2880  and 13%, respectively, of the administered activity corrected for radioactive decay (Kittle et
2881  al., 1951).

2882  26.1.3.2. Biokinetic model for systemic hafnium

2883 (289) The age-specific biokinetic model for systemic zirconium adopted in Part 1 of this
2884  series on public intake of radionuclides (ICRP, 2024) is also applied to hatnium.

2885 (290) The model structure is shown in Fig. 26.1. The transfer coefficients are listed in Table
2886  26.2.
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2888  Fig. 26.1. Structure of the biokinetic model for systemic hafnium.
2889
2890  Table 26.2. Age-specific transfer coefficients for hafnium.
Transfer coefficients (d')
Pathway 100 d ly S5y 10y 15y Adult
Blood 1 Blood 2 1.82E+00 1.91E+00 1.91E+00 191E+00 1.91E+00 2.00E+00
Blood 1 Liver 1 6.84E-02 7.17E-02 7.17E-02 7.17E-02 7.17E-02 7.50E-02
Blood 1 Kidneys 1.14E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.25E-02
Blood 1 Other 1 1.82E+00 1.91E+00 1.91E+00 191E+00 1.91E+00 2.00E+00
Blood 1 Other 2 3.42E-02  3.58E-02 3.58E-02  3.58E-02  3.58E-02  3.75E-02
Blood 1 UB content 9.12E-02  9.56E-02  9.56E-02  9.56E-02  9.56E-02 1.00E-01
Blood 1 SI content 2.28E-02  2.39E-02 2.39E-02  2.39E-02 2.39E-02  2.50E-02
Blood 1 Trab surface  5.63E-01 4.69E-01 4.69E-01 4.69E-01 4.69E-01 3.75E-01
Blood 1 Cort surface 5.63E-01 4.69E-01 4.69E-01 4.69E-01 4.69E-01 3.75E-01
Blood 2 Blood 1 4.62E-01 4.62E-01 4.62E-01 4.62E-01 4.62E-01 4.62E-01
Liver 1 SI content 1.16E-01 1.16E-01 1.16E-01 1.16E-01 1.16E-01 1.16E-01
Liver 1 Liver 2 4.62E-01 4.62E-01 4.62E-01 4.62E-01 4.62E-01 4.62E-01
Liver 1 Blood 1 1.16E-01 1.16E-01 1.16E-01 1.16E-01 1.16E-01 1.16E-01
Liver 2 Blood 1 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02
Kidneys Blood 1 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02
Other 1 Blood 1 4.62E-01 4.62E-01 4.62E-01 4.62E-01 4.62E-01 4.62E-01
Other 2 Blood 1 2.00E-02 2.00E-02 2.00E-02 2.00E-02 2.00E-02 2.00E-02
Trab surface  Blood 1 8.22E-03 2.88E-03 1.81E-03 1.32E-03 9.59E-04 4.93E-04
Trab surface  Trab volume  8.22E-03 2.88E-03 1.81E-03 1.32E-03 9.59E-04 2.47E-04
Trab volume  Blood 1 8.22E-03 2.88E-03 1.81E-03 1.32E-03 9.59E-04 4.93E-04
Cort surface Blood 1 8.22E-03 2.88E-03 1.53E-03 9.04E-04 5.21E-04 8.21E-05
Cort surface Cort volume 8.22E-03 2.88E-03 1.53E-03 9.04E-04 5.21E-04 4.11E-05
Cort volume  Blood 1 8.22E-03 2.88E-03 1.53E-03 9.04E-04 5.21E-04 8.21E-05
2891  UB, urinary bladder; SI, small intestine; Cort, cortical; Trab, trabecular.
2892  26.1.3.3. Treatment of radioactive progeny
2893 (291) The treatment of radioactive progeny produced in systemic compartments after intake
2894  ofaradioisotope of hafnium is described in Section 29.2.3.3. of Publication 151 (ICRP, 2022).
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2895  26.2. Dosimetric data for hafnium

2896  Table 26.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
2897  '32Hf compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult

Inhaled particulate materials; (1 pm AMAD aerosols)

Type F 3.3E-07 3.4E-07 2.9E-07 2.9E-07 3.0E-07 3.0E-07
Type M, default 1.4E-07 1.5E-07 1.4E-07 1.3E-07 1.4E-07 1.5E-07
Type S 3.0E-07 3.2E-07 2.7E-07 2.2E-07 2.3E-07 2.4E-07
Ingested materials

Hafnium in diet 3.2E-08 1.6E-08 1.5E-08 1.5E-08 1.5E-08 1.5E-08
All other forms 3.2E-08 3.5E-09 3.1E-09 3.1E-09 3.1E-09 3.0E-09

2898  AMAD, activity median aerodynamic diameter.
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27. TANTALUM (Z=73)

27.1. Routes of Intake
27.1.1. Inhalation

(292) For tantalum, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of tantalum are given in Table 27.1 [taken from Section 30 of Publication
151 (ICRP, 2022)].

27.1.2.  Ingestion
27.1.2.1. Adults

(293) Data from animal experiments indicate that the fractional absorption of tantalum is
small, see Publication 151 (ICRP, 2022) for details. In Publications 30, 72 and 151 (ICRP,
1981, 1995c¢, 2022), it was taken as 10~ for all compounds of tantalum. In this publication, the
value of fo =107 is also used as the default for all forms of tantalum ingested by adult members
of the public.

27.1.2.2. Children

(294) In young suckling rats, the absorption was several orders of magnitude greater than in
adults (Rydzynski and Pakulska, 2012). Consistently with the approach of Publication 56
(ICRP, 1990), an f; = 0.01 is adopted here for 3-month-old infants and the adult value of fa =
103 is used for older children.

Table 27.1. Absorption parameter values for inhaled and ingested tantalum.

Absorption parameter values”

Inhaled particulate materials £ s (d7H ss (d7h
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107™

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 0.01 0.001 0.001 0.001 0.001 0.001

“It is assumed that the bound state can be neglected for tantalum (i.e. f, = 0). The values of s, for Type F, M and
S forms of tantalum (30, 3 and 3 d™' respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fy values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of tantalum applicable to the age-group of interest (e.g. 0.001 for
adults).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).
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SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (e.g. 0.001).

27.1.3. Systemic distribution, retention and excretion of tantalum
27.1.3.1. Biokinetic data

(295) The chemical and physical properties of the Group VB element tantalum (Ta) closely
resemble those of the lighter Group VB element niobium (Nb). These two elements are found
together in nature and are sometimes referred to as geochemical twins due to their nearly
proportional mass ratios across most geological material (Muenker et al., 2003), attributed to a
common valence state and virtually identical ionic radii.

(296) Ando et al (1989, 1990) studied the distribution and excretion of Ta and Nb following
intravenous administration of these elements as oxalate to tumor-bearing rats. Activity
concentrations were measured in blood, bone, ten different soft tissues, and an implanted
sarcoma. The behaviour of Ta closely followed that of Nb at all studied sites.

(297) In rats administered *>Nb and '¥*Ta,Os in citrate solution via intramuscular injection,
both radionuclides showed elevated concentrations in liver, kidney, and bone (Durbin, 1960).
At 4 d post injection, cumulative excretion of activity accounted for 48.6% of administered
82Ta and 39.4% of administered >Nb. At that time, activity in bone, liver, and kidneys
represented roughly 23%. 14%, and 10%, respectively of retained '3Ta and 27%, 14%, and
5%, respectively, of retained **Nb.

(298) Fleshman et al. (1971) investigated the biokinetics of '%*Ta in rats over 106 d after its
oral administration as potassium tantalite to rats. Bone was the dominant long-term repository,
followed by pelt. At 106 d, bone, liver, and kidneys contained about 46%, 3.4%, and 1.2%
respectively, of the total-body content.

27.1.3.2. Biokinetic model for systemic tantalum

(299) In view of the close chemical and physical properties of Ta and Nb and their similar
biokinetics in available comparative studies, the age-specific biokinetic model for Nb applied
in Part 1 of this series of reports (ICRP 2024) is assigned to the less frequently studied element
Ta.

(300) The structure of the systemic model for Ta is shown in Fig. 27.1. Transfer coefficients
are listed in Table 27.2.
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Fig. 27.1. Structure of the biokinetic model for systemic tantalum.
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2963  Table 27.2. Age-specific transfer coefficients for tantalum.

Transfer coefficients (d™!)

Pathway 100d ly S5y 10y 15y Adult

Blood 1 Blood 2 3.15E+00 3.18E+00 3.18E+00 3.18E+00 3.18E+00  3.20E+00
Blood 1 Liver 1 2.36E-01  2.38E-01 2.38E-01 238E-01 2.38E-01 2.40E-01
Blood 1 Kidneys 3.94E-02  3.97E-02 3.97E-02 3.97E-02 3.97E-02  4.00E-02
Blood 1 Other 1 3.15E+00 3.18E+00 3.18E+00 3.18E+00 3.18E+00  3.20E+00
Blood 1 Other 2 1.18E-01  1.19E-01  1.19E-01  1.19E-01  1.19E-01  1.20E-01
Blood 1 UB content 8.66E-01  8.73E-01 8.73E-01  8.73E-01  8.73E-01  8.80E-01
Blood 1 SI content 7.88E-02  7.94E-02  7.94E-02  7.94E-02  7.94E-02  8.00E-02
Blood 1 Trab surface  1.80E-01  1.50E-01  1.50E-01  1.50E-01  1.50E-01  1.20E-01
Blood 1 Cort surface  1.80E-01  1.50E-01  1.50E-01  1.50E-01  1.50E-01  1.20E-01
Blood 2 Blood 1 1.39E+00  1.39E+00  1.39E+00 1.39E+00 1.39E+00  1.39E+00
Liver 1 SI content 5.78E-02  5.78E-02  5.78E-02  5.78E-02  5.78E-02  5.78E-02
Liver 1 Blood 1 5.78E-02  5.78E-02  5.78E-02  5.78E-02  5.78E-02  5.78E-02
Liver 1 Liver 2 2.31E-01  231E-01 2.31E-01 231E-01 231E-01 2.31E-01
Liver 2 Blood 1 5.00E-03  5.00E-03  5.00E-03  5.00E-03  5.00E-03  5.00E-03
Kidneys Blood 1 5.00E-03  5.00E-03  5.00E-03  5.00E-03  5.00E-03  5.00E-03
Other 1 Blood 1 1.39E+00  1.39E+00  1.39E+00  1.39E+00 1.39E+00  1.39E+00
Other 2 Blood 1 1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02
Trab surface  Blood 1 8.22E-03  2.88E-03  1.81E-03  1.32E-03 9.59E-04 4.93E-04
Trab surface  Trab volume  8.22E-03  2.88E-03  1.81E-03  1.32E-03  9.59E-04 247E-04
Trab volume  Blood 1 8.22E-03  2.88E-03  1.81E-03  1.32E-03 9.59E-04 4.93E-04
Cort surface  Blood 1 8.22E-03  2.88E-03 1.53E-03 9.04E-04 5.21E-04 8.21E-05
Cort surface ~ Cort volume  8.22E-03  2.88E-03  1.53E-03  9.04E-04 521E-04 4.11E-05
Cort volume  Blood 1 8.22E-03  2.88E-03  1.53E-03  9.04E-04 5.21E-04 8.21E-05

2964  UB, urinary bladder; SI, small intestine; RC, right colon; Cort, cortical; Trab, trabecular.
2965  27.1.3.3. Treatment of radioactive progeny

2966 (301) The treatment of radioactive progeny produced in systemic compartments after intake
2967  ofaradioisotope of tantalum is described in Section 30.2.3.3. of Publication 151 (ICRP, 2022).

2968 27.2. Dosimetric data for tantalum

2969  Table 27.3. Committed effective dose coefficients (Sv Bq™') for the inhalation or ingestion of
2970  '82Ta compounds.

Effective dose coefficients (Sv Bq!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials; (1 um AMAD aerosols)
Type F 1.1E-08 9.3E-09 4.7E-09 2.9E-09 2.2E-09 2.0E-09
Type M, default 1.9E-08 1.6E-08 9.2E-09 6.1E-09 4.7E-09 4.8E-09
Type S 2.9E-08 2.5E-08 1.5E-08 1.0E-08 7.7E-09 8.0E-09

Ingested materials
All compounds 2.4E-09 1.9E-09 1.1E-09 7.6E-10 5.3E-10 5.0E-10

2971  AMAD, activity median aerodynamic diameter.
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28. TUNGSTEN (Z=74)

28.1. Routes of Intake
28.1.1. Inhalation

(302) For tungsten, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of tungsten are given in Table 28.1 [taken from Section 31 of Publication
151 (ICRP, 2022)].

28.1.2.  Ingestion
28.1.2.1. Adults

(303) A large fraction of ingested tungsten is absorbed from the gut, with absorption from
tungstic acid being less than from other compounds, see Publication 151 (ICRP, 2022) for
more details. In Publications 30 and 72 (ICRP, 1981, 1994a), f1 was taken as 0.01 for tungstic
acid and 0.3 for all other compounds of the element. In Publication 151, a value of fa = 0.5 was
adopted for all forms other than tungstic acid. For ingestion of tungsten by adult members of
the public the values adopted here are fao = 0.01 for tungstic acid and fa = 0.5 for all other forms
of tungsten, including tungsten in diet.

28.1.2.2. Children

(304) Consistently with the approach of Publication56 (ICRP, 1990), the values of fa = 0.02
and fa = 1, respectively, are adopted here for ingestion of tungstic acid and of all other forms
of tungsten, respectively, by 3 month old infants. The adult values are used for older children.

Table 28.1. Absorption parameter values for inhaled and ingested tungsten.
Absorption parameter values”

Inhaled particulate materials £ s (dh ss (d7h
Default parameter values'

Absorption type

F 1 30 -
M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
Tungstic acid 0.02 0.01 0.01 0.01 0.01 0.01
All other forms 1 0.5 0.5 0.5 0.5 0.5

“It is assumed that the bound state can be neglected for tungsten (i.e. f, = 0). The values of s, for Type F, M and S
forms of tungsten (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fx value for ingested soluble forms of tungsten applicable to the age-group of interest (e.g. 0.5 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

120



3002
3003
3004

3005

3006

3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031

3032

3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047

I‘Ri DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age group of interest (e.g. 0.5 for adults).

28.1.3.  Systemic distribution, retention and excretion of tungsten
28.1.3.1. Biokinetic data

(305) The biokinetics of tungsten (W) has been studied in a variety of laboratory animals
including: dogs receiving radio-tungsten by inhalation or injection (Aamodt, 1973, 1975);
swine exposed to radionuclides produced by a nuclear explosion (Chertok and Lake 1971a,
1971b, 1971c); rodents administered radio-tungsten by different routes (Scott, 1952; Wase,
1956; Ballou, 1960; Fleshman et al., 1966; Kaye, 1968; Ando et al., 1989); and sheep, pigs,
cows, and goats receiving radio-tungsten by injection or ingestion (Bell and Sneed, 1970;
Mullen et al., 1976; Ekman et al., 1977). Direct information on the behaviour of absorbed
tungsten in humans consists mainly of measurements of the concentration of tungsten in blood
hair, nails, and excreta of living subjects (Wester 1973, 1974; Brune et al. 1980; Nicolaou et
al. 1987).

(306) Important repositories for tungsten include the liver, kidneys, spleen, and bone.
Results of animal studies indicate that a few percent of absorbed tungsten deposits in bone, a
substantial portion of the deposited amount is retained for an extended period, and
accumulation of tungsten is greater in growing than in mature bone (Fleshman et al., 1966;
Kaye, 1968; Aamodt, 1975; Mullen et al., 1976; Ando et al., 1989). Similarities in the
behaviour of tungstate, molybdate, and phosphate in biological systems have been observed.
Tungsten is deposited and retained in bone, presumably due to substitution of tungstate for
phosphate (Fleshman et al., 1966).

(307) Tungsten is considered a physiological analogue of molybdenum and can produce
deficiency of molybdenum resulting from prevention of incorporation of molybdenum into
certain enzymes (Cardin and Mason, 1976). Membrane transport may not distinguish between
tungsten and molybdenum, although differences in the biokinetics of these elements may result
from the fact that molybdenum compounds are more easily reduced in biological systems
(Callis and Wentworth, 1977). An apparent difference in the systemic kinetics of these two
elements is that the liver appears to accumulate considerably more molybdenum than tungsten.

28.1.3.2. Biokinetic model for systemic tungsten

(308) A biokinetic model for systemic tungsten proposed by Leggett (1997) was adopted in
Publication 151 (ICRP, 2022) for occupational intake of tungsten. That model is applied in this
report to adult members of the public and is extended to pre-adults ages, primarily by
introduction of age-specific transfer coefficients to and from bone compartments. For ages 15
y and lower, the transfer coefficients from plasma to cortical and trabecular bone surface are
set at 2 times the values for adults. The transfer coefficients from plasma to all other
destinations are decreased by ~6% to yield a removal half-time from plasma of 30 min (the
same as the outflow rate from plasma in the model for adults) for all preadult ages. The age-
specific bone model applied to phosphorus in Part 1 of this series is applied to tungsten that
deposits in bone, based on the assumption that accumulation of tungsten in bone is due to
replacement of phosphate with tungstate. The “bone model” refers here to all transfer
coefficients describing outflow from any bone compartment.

(309) The structure of the biokinetic model for tungsten is shown in Fig. 28.1. Transfer
coefficients are listed in Table 28.2.
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Table 28.2. Age-specific transfer coefficients for tungsten.

Transfer coefficients (d™!)

Pathway 100d ly S5y 10y 15y Adult
Plasma RBC 5.48E-02 548E-02 5.48E-02 5.48E-02 5.48E-02 5.82E-02
Plasma UB content 8.22E+00 8.22E+00 8.22E+00 8.22E+00 8.22E+00 8.74E+00
Plasma Kidneys 1 493E-01 4.93E-01 4.93E-01 4.93E-01 4.93E-01 5.24E-01
Plasma Kidneys 2 5.48E-02 548E-02 5.48E-02 5.48E-02 5.48E-02 5.82E-02
Plasma RC content 548E-01 548E-01 548E-01 548E-01 5.48E-01 5.82E-01
Plasma Spleen 5.48E-03 548E-03 5.48E-03 5.48E-03 5.48E-03 5.82E-03
Plasma Liver 1 4.38E-01 4.38E-01 4.38E-01 4.38E-01 4.38E-01 4.66E-01
Plasma Other 1 4.69E+00 4.69E+00 4.69E+00 4.69E+00 4.69E+00 4.99E+00
Plasma Other 2 247E-01 247E-01 247E-01 247E-01 247E-01 2.62E-01
Plasma Other 3 2.19E-02  2.19E-02 2.19E-02 2.19E-02 2.19E-02  2.33E-02
Plasma Trab surface 1.04E+00 1.04E+00 1.04E+00 1.04E+00 1.04E+00 5.18E-01
Plasma Cort surface 8.28E-01 8.28E-01 8.28E-01 8.28E-01 8.28E-01 4.14E-01
RBC Plasma 347E-01 347E-01 347E-01 347E-01 3.47E-01 3.47E-01
Kidneys 1 UB content 1.39E+00 1.39E+00 1.39E+00 1.39E+00 1.39E+00 1.39E+00
Kidneys 2 Plasma 1.90E-03 1.90E-03 1.90E-03 1.90E-03 1.90E-03  1.90E-03
Liver 1 Plasma 3.12E-01 3.12E-01 3.12E-01  3.12E-01 3.12E-01 3.12E-01
Liver 1 Liver 2 347E-02 347E-02 347E-02 347E-02 3.47E-02 3.47E-02
Liver 2 Plasma 1.90E-03  1.90E-03 1.90E-03 1.90E-03 1.90E-03  1.90E-03
Other 1 Plasma 8.32E+00 8.32E+00 8.32E+00 8.32E+00 8.32E+00  8.32E+00
Other 2 Plasma 6.93E-02 6.93E-02 6.93E-02 6.93E-02 6.93E-02 6.93E-02
Other 3 Excreta 1.90E-03  1.90E-03 1.90E-03 1.90E-03 1.90E-03 1.90E-03
Spleen Plasma 1.90E-03  1.90E-03 1.90E-03 1.90E-03 1.90E-03 1.90E-03
Trab surface Plasma 5.78E-01  5.78E-01 5.78E-01 5.78E-01 5.78E-01  5.78E-01
Trab surface Trab volume 1  1.16E-01  1.16E-01  1.16E-01 1.16E-01  1.16E-01  1.16E-01
Cort surface Plasma 5.78E-01  5.78E-01 5.78E-01 5.78E-01 5.78E-01  5.78E-01
Cort surface Cort volume 1  1.16E-01 1.16E-01 1.16E-01 1.16E-01  1.16E-01  1.16E-01
Trab volume 1  Trab surface 2.77E-03  2.77E-03  2.77E-03 2.77E-03  2.77E-03  2.77E-03
Trab volume 1  Trab volume 2  4.16E-03 4.16E-03 4.16E-03 4.16E-03 4.16E-03  4.16E-03
Cort volume 1  Cort surface 2.77E-03  2.77E-03  2.77E-03 2.77E-03 2.77E-03  2.77E-03
Cort volume 1  Cortvolume2 4.16E-03 4.16E-03 4.16E-03 4.16E-03 4.16E-03  4.16E-03
Trab volume 2  Plasma 8.22E-03 2.88E-03 1.81E-03 1.32E-03 9.59E-04 4.93E-04
Cort volume 2  Plasma 8.22E-03 2.88E-03 1.53E-03 9.04E-04 5.21E-04 8.21E-05

UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular; RBC, red blood cells.

28.1.3.3. Treatment of radioactive progeny

(310) The treatment of radioactive progeny produced in systemic compartments after intake
of a radioisotope of tungsten is described in Section 31.2.3.3. of Publication 151 (ICRP, 2022).
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3058  28.2. Dosimetric data for tungsten

3059  Table 28.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
3060  '8'W compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult

Inhaled particulate materials; (1 pm AMAD aerosols)

Type F 1.3E-10 8.9E-11 4.4E-11 2.9E-11 1.8E-11 1.6E-11
Type M, default 8.2E-10 7.0E-10 3.8E-10 2.5E-10 1.8E-10 1.8E-10
Type S 1.5E-09 1.3E-09 7.2E-10 4.8E-10 3.5E-10 3.6E-10
Ingested materials

Tungstic acid 9.9E-11 9.1E-11 5.0E-11 3.6E-11 2.4E-11 2.4E-11
All other forms 2.6E-10 1.4E-10 8.1E-11 5.4E-11 3.8E-11 3.2E-11

3061  AMAD, activity median aerodynamic diameter.
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29. RHENIUM (Z=75)

29.1. Routes of Intake
29.1.1. Inhalation

(311) For rhenium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of rhenium are given in Table 29.1 [taken from Section 32 of Publication
151 (ICRP, 2022)].

29.1.2.  Ingestion
29.1.2.1. Adults

(312) In Publications 30 and 72 (ICRP, 1980, 1995c), a fractional absorption value of 0.8
was recommended for all chemical forms of rhenium based on the chemical analogy with
technetium. In Publication 134 (ICRP, 2016), an fa value of 0.9 was used for all chemical
forms of technetium in the workplace. The same value of fa = 0.9 was consequently adopted
in Publication 151 (ICRP, 2022) for all forms of rhenium. In Publication 158(ICRP, 2024), a
value of fa= 0.5 was adopted for ingestion by adults of technetium in food, while for ingestion
of pertechnetate an fo = 0.9 was used. In this publication, values of fa = 0.5 for thenium in food
and fa = 0.9 for all other forms of rhenium are adopted for ingestion by adult members of the
public.

29.1.2.2. Children

(313) The same values as used in Publication 158 for ingestion of technetium by children
are adopted for rhenium in this publication. So, for ingestion by 3-month-old infants, an fa = 1
is used here for all forms of rhenium. For older children, the adult fo values are used.

Table 29.1. Absorption parameter values for inhaled and ingested rhenium.

Absorption parameter values”

Inhaled particulate materials £ s (dh s (d7h
Default parameter values'

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
Rhenium in food 1 0.5 0.5 0.5 0.5 0.5
All other forms 1 0.9 0.9 0.9 0.9 0.9

“It is assumed that the bound state can be neglected for thenium (i.e. f, = 0). The values of s, for Type F, M and S
forms of rhenium (30, 3 and 3 d! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fx value for ingested soluble forms of rhenium applicable to the age-group of interest (e.g. 0.9 for adults).
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Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (e.g. 0.9 for adults).

29.1.3. Systemic distribution, retention and excretion of rhenium
29.1.3.1. Biokinetic data

(314) Rhenium (Re) is the heaviest naturally occurring element in Group VIIB of the period
table. It is a close physiological analogue of the Group VIIB element technetium, presumably
due to the combination of the similar ionic radii and chemical properties of these elements
(Deutsch et al., 1986; Dadachova et al., 2002; Zuckier et al., 2004). Rhenium and technetium
have similar coordination chemistry, often resulting in isostructural rhenium and technetium
complexes. These elements become covalently bound with oxide ions to form the structurally
similar anions perrhenate (ReOs) and pertechnetate (TcO4") in the body, which have medical
applications as physiological analogues of iodide (Dadachova et al., 2002).

29.1.3.2. Biokinetic model for systemic rhenium

(315) The age-specific biokinetic model for systemic technetium applied in Part 1 of this
report series on dose coefficients for members of the public (ICRP, 2024) is also applied to
rhenium. The model structure is shown in Fig. 29.1. Transfer coefficients are listed in Table
29.2. These transfer coefficients are independent of age except that the ICRP’s generic age-
specific bone turnover rates are assigned to transfers from bone volume compartments to blood.
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Fig. 29.1. Structure of the biokinetic model for systemic rhenium. St, stomach; SI, stomach
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3118  Table 29.2. Age-specific transfer coefficients for rhenium.
Transfer coefficients (d™!)

Pathway 100 d ly S5y 10y 15y Adult
Blood Thyroid 1 7.00E+00 7.00E+00 7.00E+00 7.00E+00 7.00E+00 7.00E+00
Blood Other 1 7.19E+01 7.19E+01 7.19E+01 7.19E+01 7.19E+01 7.19E+01
Blood Other 2 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00  3.00E+00
Blood Other 3 1.80E-01  1.80E-01  1.80E-01  1.80E-01  1.80E-01  1.80E-01
Blood UB content 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.70E+00
Blood S-glands 2.60E+00 2.60E+00 2.60E+00 2.60E+00 2.60E+00 2.60E+00
Blood Stomach wall ~ 4.30E+00 4.30E+00 4.30E+00 4.30E+00 4.30E+00 4.30E+00
Blood Kidneys 1 7.00E-01  7.00E-01  7.00E-01  7.00E-01  7.00E-01  7.00E-01
Blood Kidneys 2 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02  4.00E-02
Blood Liver 1 450E+00 4.50E+00 4.50E+00 4.50E+00 4.50E+00 4.50E+00
Blood RC wall 3.40E+00 3.40E+00 3.40E+00 3.40E+00 3.40E+00 3.40E+00
Blood Cort surface 3.50E-01 3.50E-01 3.50E-01 3.50E-01 3.50E-01  3.50E-01
Blood Trab surface 3.50E-01 3.50E-01 3.50E-01 3.50E-01 3.50E-01  3.50E-01
Thyroid 1 Blood 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
Thyroid 1 Thyroid 2 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Thyroid 2 Blood 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Other 1 Blood 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Other 2 Blood 4.62E-01 4.62E-01 4.62E-01 4.62E-01 4.62E-01 4.62E-01
Other 3 Blood 3.47E-02 347E-02 3.47E-02 3.47E-02 3.47E-02 3.47E-02
S-glands Oral cavity 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Stomach wall St content 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Kidneys 1 UB content 8.32E+00 8.32E+00 8.32E+00 8.32E+00 8.32E+00  8.32E+00
Kidneys 2 Blood 3.47E-02 347E-02 3.47E-02 347E-02 3.47E-02 3.47E-02
Liver 1 Blood 8.23E+00 8.23E+00 8.23E+00 8.23E+00 8.23E+00 8.23E+00
Liver 1 Liver 2 8.32E-02  8.32E-02 8.32E-02 8.32E-02 8.32E-02  8.32E-02
Liver 2 Blood 3.47E-02 347E-02 3.47E-02 347E-02 3.47E-02 3.47E-02
RC wall RC content 1.39E+00 1.39E+00 1.39E+00 1.39E+00 1.39E+00 1.39E+00
Cort surface Blood 4.57E-01 4.57E-01 4.57E-01 4.57E-01 4.57E-01 4.57E-01
Cort surface Cort volume  4.62E-03  4.62E-03  4.62E-03  4.62E-03  4.62E-03  4.62E-03
Trab surface Blood 4.57E-01 4.57E-01 4.57E-01 4.57E-01 4.57E-01 4.57E-01
Trab surface ~ Trab volume  4.62E-03  4.62E-03  4.62E-03  4.62E-03  4.62E-03  4.62E-03
Cort volume  Blood 8.22E-03  2.88E-03  1.53E-03  9.04E-04 5.21E-04 8.21E-05
Trab volume  Blood 8.22E-03 2.88E-03  1.81E-03  1.32E-03  9.59E-04 4.93E-04

3119 UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular; S-glands, salivary glands.

3120  29.1.3.3. Treatment of radioactive progeny

3121 (316) The treatment of radioactive progeny produced in systemic compartments after intake

3122 ofaradioisotope of rhenium is described in Section 32.2.3.3. of Publication 151 (ICRP, 2022).

3123
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3124 29.2. Dosimetric data for rhenium

3125  Table 29.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
3126  '3Re compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult

Inhaled particulate materials; (1 pm AMAD aerosols)

Type F 3.0E-09 2.1E-09 8.8E-10 5.1E-10 3.1E-10 2.4E-10
Type M, default 2.6E-09 1.9E-09 9.9E-10 6.6E-10 4.9E-10 4.4E-10
Type S 2.4E-09 1.8E-09 1.0E-09 6.9E-10 5.3E-10 4.8E-10
Ingested materials

Rhenium in food 5.6E-09 2.3E-09 1.2E-09 7.2E-10 4.8E-10 3.7E-10
All other forms 5.6E-09 3.7E-09 1.9E-09 1.1E-09 7.3E-10 5.5E-10

3127  AMAD, activity median aerodynamic diameter.

3128
3129  Table 29.4. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
3130  !3%Re compounds.

Effective dose coefficients (Sv Bq!)

3m ly Sy 10y 15y Adult

Inhaled particulate materials; (1 pm AMAD aerosols)

Type F 2.5E-09 1.8E-09 8.1E-10 5.1E-10 3.2E-10 2.4E-10
Type M, default 2.0E-09 1.4E-09 7.0E-10 4.9E-10 3.4E-10 2.8E-10
Type S 1.8E-09 1.3E-09 6.6E-10 4.7E-10 3.3E-10 2.9E-10
Ingested materials

Rhenium in food 4.9E-09 2.5E-09 1.4E-09 9.2E-10 6.2E-10 4.7E-10
All other forms 4.9E-09 3.6E-09 2.0E-09 1.2E-09 8.4E-10 6.2E-10

3131  AMAD, activity median aerodynamic diameter.

3132
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30. OSMIUM (Z=76)

30.1. Routes of Intake
30.1.1. Inhalation

(317) For osmium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of osmium are given in Table 30.1 [taken from Section 33 of Publication
151 (ICRP, 2022)].

30.1.2.  Ingestion
30.1.2.1. Adults

(318) In Publications 30, 72 and 151 (ICRP, 1980, 1995c, 2022), a fractional absorption
value of 0.01 was recommended for ingestion of all forms of osmium based on the chemical
analogy with iridium. The same value of fo = 0.01 is adopted here for all chemical forms of
osmium ingested by adult members of the public.

30.1.2.2. Children

(319) The same values as used in Publication 158 (ICRP, 2024) for ingestion of iridium by
children are adopted for osmium in this publication. So, for ingestion by 3-month-old infants,
an fa = 0.02 is used here for all forms of osmium. For older children, the adult value of fa =
0.01 is used.

Table 30.1. Absorption parameter values for inhaled and ingested osmium.

Absorption parameter values”

Inhaled particulate materials £ se(dh s (d7hH
Default parameter values'

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 0.02 0.01 0.01 0.01 0.01 0.01

“It is assumed that the bound state can be neglected for osmium (i.e. f, = 0). The values of s; for Type F, M and S
forms of osmium (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the f3 value for ingested soluble forms of osmium applicable to the age-group of interest (e.g. 0.01 for adults).
‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (e.g. 0.01 for adults).
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30.1.3. Systemic distribution, retention and excretion of osmium
30.1.3.1. Biokinetic data

(320) Osmium (Os) is a member of the platinum group, which also includes platinum,
iridium, ruthenium, rhodium, and palladium. Results of studies on rodents indicate similar
systemic behaviour across the platinum group following administration of relatively soluble
forms (Durbin et al., 1957; Durbin, 1960; Moore et al., 1975a, 1975b, 1975c; Weininger et al.,
1990; Jamre et al., 2011). Limited comparative data indicate that the systemic kinetics of
osmium is particularly close to that of platinum. Relatively high concentrations of the platinum
elements are seen in the kidneys and liver at early times after injection (Durbin et al., 1957,
Durbin, 1960; Weininger et al., 1990; Jamre et al., 2011). Excretion is mainly in urine.

30.1.3.2. Biokinetics model for systemic osmium

(321) The biokinetic model for systemic osmium applied to workers in Publication 151
(2022) is applied here to adult members of the public. The same model is applied to preadults
except that osmium reaching a bone volume compartment is assumed to be removed to blood
at the reference age-specific rate of turnover of that bone type (ICRP, 2002).

(322) The model structure is shown in Fig. 30.1. Transfer coefficients are listed in Table
30.2.

, Other :
, soft Other 2 Other 1 Other 3 |,
| tissue [
Licoira i oo _ 45 ______ \{7‘ ./.]\ ______ f_ [ —
Bone . N
. [ Cortical Cortical |15 22041 | Liver 1
: volume S| surface |, | @_| Liver 2 ‘ :
| |
1 : BT Liviﬂ [
I [Trabecular Trabecular—> Lo o e !
! volume surface |, | h \L
\ iR
‘ | ! :‘ Sl content ‘
L Blood 2 v
:Kldneys | ‘ Colon content ‘
: <
|
Urinary | | Kidneys 2 H|_> \L
i |
Urine |« bladder <|_Kidneys 1l Faeces
content | '
- |

Fig. 30.1. Structure of the biokinetic model for systemic osmium. SI, small intestine.
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Table 30.2. Age-specific transfer coefficients for osmium.

Transfer coefficients (d™!)

Pathway 100d ly S5y 10y 15y Adult

Blood 1 SI content 3.00E+00  3.00E+00 3.00E+00 3.00E+00 3.00E+00  3.00E+00
Blood 1 UB content 2.30E+01  2.30E+01 2.30E+01 2.30E+01 2.30E+01  2.30E+01
Blood 1 Liver 1 1.20E+01  1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01
Blood 1 Kidneys 1 1.07E+01  1.07E+01 1.07E+01 1.07E+01 1.07E+01 1.07E+01
Blood 1 Kidneys 2 3.30E-01  3.30E-01 3.30E-01  3.30E-01  3.30E-01  3.30E-01
Blood 1 Blood 2 2.70E+01  2.70E+01 2.70E+01 2.70E+01 2.70E+01  2.70E+01
Blood 1 Other 1 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Blood 1 Other 2 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00  2.50E+00
Blood 1 Other 3 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00  2.50E+00
Blood 1 Cort surface 1.00E+00 1.00E+00 1.00E+00 1.00E+00  1.00E+00  1.00E+00
Blood 1 Trab surface  3.00E+00 3.00E+00 3.00E+00  3.00E+00 3.00E+00  3.00E+00
Blood 2 Blood 1 6.93E-01 6.93E-01 6.93E-01 6.93E-01 6.93E-01 6.93E-01
Liver 1 Blood 1 9.70E-02  9.70E-02  9.70E-02  9.70E-02  9.70E-02  9.70E-02
Liver 1 SI content 347E-02 347E-02 347E-02 3.47E-02 3.47E-02 3.47E-02
Liver 1 Liver 2 6.93E-03  6.93E-03  6.93E-03 6.93E-03 6.93E-03  6.93E-03
Liver 2 Blood 1 3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03
Kidneys 1 UB content 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01
Kidneys 2 Blood 1 3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03
Other 1 Blood 1 9.90E-02  9.90E-02  9.90E-02  9.90E-02  9.90E-02  9.90E-02
Other 3 Blood 1 2.31E-02  2.31E-02 231E-02  231E-02  2.31E-02  2.31E-02
Other 2 Blood 1 9.50E-04  9.50E-04 9.50E-04 9.50E-04 9.50E-04 9.50E-04
Cort surface  Blood 1 7.92E-02  7.92E-02  7.92E-02  7.92E-02  7.92E-02 7.92E-02
Trab surface  Blood 1 7.92E-02  7.92E-02  7.92E-02 7.92E-02 7.92E-02  7.92E-02
Cort surface  Cort volume  1.98E-02  1.98E-02  1.98E-02 1.98E-02 1.98E-02  1.98E-02
Trab surface  Trab volume  1.98E-02  1.98E-02  1.98E-02 1.98E-02 1.98E-02  1.98E-02
Cort volume  Blood 1 8.22E-03  2.88E-03  1.53E-03 9.04E-04 5.21E-04 8.21E-05
Trab volume  Blood 1 8.22E-03 2.88E-03  1.81E-03  1.32E-03  9.59E-04  4.93E-04

UB, urinary bladder; SI, small intestine; Cort, cortical; Trab, trabecular.

30.1.3.3. Treatment of radioactive progeny

(323) The treatment of radioactive progeny produced in systemic compartments after intake
of a radioisotope of osmium is described in Section 33.2.3.3. of Publication 151 (ICRP, 2022).
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3190 30.2. Dosimetric data for osmium

3191  Table 30.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
3192 *0Os compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials; (1 pm AMAD aerosols)
Type F 1.7E-08 1.5E-08 8.4E-09 5.2E-09 4.2E-09 3.8E-09
Type M, default 6.1E-08 5.7E-08 3.3E-08 2.2E-08 1.8E-08 1.8E-08
Type S 2.8E-07 2.8E-07 1.9E-07 1.4E-07 1.3E-07 1.4E-07

Ingested materials
All compounds 2.8E-09 1.8E-09 1.1E-09 7.0E-10 4.8E-10 4.6E-10

3193  AMAD, activity median aerodynamic diameter.
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31. PLATINUM (Z=78)

31.1. Routes of Intake
31.1.1. Inhalation

(324) For platinum, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of platinum are given in Table 31.1 [taken from Section 34 of Publication
151 (ICRP, 2022)].

31.1.2.  Ingestion
31.1.2.1. Adults

(325) The gastro-intestinal absorption of soluble platinum in human and animal studies
appears to be in the order of a percent, see Publication 151 (ICRP, 2022) for details. In
Publications 30 and 72 (ICRP, 1981, 1995c), a fractional absorption value of 0.01 was
recommended for all chemical forms of platinum. The same value was used in Publication 151
for soluble forms of platinum. For metallic, oxide and hydroxide platinum compounds,
Publication 151 used a lower fa = 0.001. The values of fao = 0.01 for soluble forms of platinum
and for platinum in diet, and fa = 0.001 for platinum metal, oxide and hydroxide are adopted
here for ingestion by adult members of the public.

31.1.2.2. Children

(326) In a study by Moore et al (1975a), a twice higher retention was observed in suckling
rats than in adult rats only for one day after oral administration. For one week thereafter, the
fractional retention was similar in suckling and adult rats. Consistently with these data and with
the approach of Publication 56 (ICRP, 1990), an fa = 0.02 is adopted here for ingestion of
soluble platinum forms by 3-month-old infants while the value fa = 0.01 is used for older
children. The values of fa = 0.002 and fa = 0.001 are used for ingestion of platinum metal,
oxide and hydroxide by 3-month-old infants and by older children, respectively.

Table 31.1. Absorption parameter values for inhaled and ingested platinum.

Absorption parameter values”

Inhaled particulate materials £ s (d7h ss (d7h
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years  15years  adult
Soluble forms and platinum in diet 0.02 0.01 0.01 0.01 0.01 0.01
Metal, oxide and hydroxide 0.002 0.001 0.001 0.001 0.001 0.001

"It is assumed that the bound state can be neglected for platinum (i.e. f, = 0). The values of s, for Type F, M and
S forms of platinum (30, 3 and 3 d~! respectively) are the general default values.
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For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied: i.e. the product of £; for the absorption type
and the fa value for ingested soluble forms of platinum applicable to the age-group of interest (e.g. 0.01 for adults).
Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (e.g. 0.01 for adults).

31.1.3. Systemic distribution, retention and excretion of platinum
31.1.3.1. Biokinetic data

(327) The chemically similar elements platinum, iridium, ruthenium, rhodium, palladium,
and osmium are found together in nature and are referred to as the platinum group. Biokinetic
studies indicate broadly similar systemic behaviour across the platinum group (Durbin et al.,
1957; Durbin, 1960; Moore et al., 1975b; Weininger et al., 1990; Jamre et al., 2011). These
elements typically show a high urinary excretion rate and high deposition in the kidneys and
liver at early times after injection or absorption into blood.

(328) The systemic behaviour of platinum has been studied in laboratory animals and to
some extent in human subjects (Durbin et al., 1957; Durbin, 1960; Lange et al., 1973; Smith
and Taylor, 1974; Litterst et al., 1976; Yoakum et al., 1975; Moore et al., 1975a,b,c; Hirunuma
et al., 1997). Following intravenous administration of radio-platinum to rats, highest
concentrations generally were found in the kidneys, followed by the liver (Durbin et al., 1957;
Moore et al., 1975a,b,c). At 1 mo the rats contained roughly 10-15% of the intravenously
injected activity (corrected for decay).

(329) The biokinetics of platinum has been studied in human subjects following
administration of the antitumor agent cis-Pt(NH3)2Cl, labeled with >™Pt (Lange et al., 1973;
Smith and Taylor, 1974). The systemic behaviour of the platinum label resembled that of other
forms of platinum administered to laboratory animals. In the study by Smith and Taylor (1974),
about 35% of the injected activity was excreted in urine during the first 3.5 d. Fecal excretion
of the label was estimated as <10% over 4 d. A high rate of urinary excretion also was seen in
the study by Lange et al. (1973). The liver accumulated an estimated 10% of the injected
activity during the first day. The estimated biological half-times of the label in the liver and
total body during days 1-7 were 8 d and 10 d, respectively.

31.1.3.2. Biokinetic model for systemic platinum

(330) The biokinetic model for systemic platinum applied to workers in Publication 151
(ICRP, 2022) is applied here to adult members of the public. The same model is applied to
preadult ages except that platinum reaching a bone volume compartment is assumed to be
removed to blood at the reference age-specific rate of turnover of that bone type (ICRP, 2002).

(331) The model structure is shown in Fig. 31.1. Transfer coefficients are listed in Table
31.2.
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Fig. 31.1. Structure of the biokinetic model for systemic platinum. SI, small intestine.

Table 31.2. Age-specific transfer coefficients for platinum.

Transfer coefficients (d™!)

Pathway 100 d ly S5y 10y 15y Adult

Blood 1 SI content 3.00E+00  3.00E+00 3.00E+00 3.00E+00  3.00E+00  3.00E+00
Blood 1 UB content 2.30E+01  2.30E+01 2.30E+01 2.30E+01 2.30E+01  2.30E+01
Blood 1 Liver 1 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01
Blood 1 Kidneys 1 1.07E+01 1.07E+01 1.07E+01 1.07E+01 1.07E+01 1.07E+01
Blood 1 Kidneys 2 3.30E-01  3.30E-01  3.30E-01  3.30E-01  3.30E-01  3.30E-O1
Blood 1 Blood 2 2.70E+01 2.70E+01 2.70E+01 2.70E+01 2.70E+01  2.70E+01
Blood 1 Other 1 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Blood 1 Other 2 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00  2.50E-+00
Blood 1 Other 3 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00  2.50E-+00
Blood 1 Cort surface 1.00E+00  1.00E+00 1.00E+00  1.00E+00  1.00E+00  1.00E+00
Blood 1 Trab surface  3.00E+00 3.00E+00 3.00E+00  3.00E+00 3.00E+00  3.00E+00
Blood 2 Blood 1 6.93E-01 6.93E-01 6.93E-01 6.93E-01 6.93E-01 6.93E-01
Liver 1 Blood 1 9.70E-02  9.70E-02  9.70E-02  9.70E-02  9.70E-02  9.70E-02
Liver 1 SI content 347E-02 3.47E-02 3.47E-02 3.47E-02 3.47E-02 3.47E-02
Liver 1 Liver 2 6.93E-03  6.93E-03  6.93E-03 6.93E-03 6.93E-03  6.93E-03
Liver 2 Blood 1 3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03
Kidneys 1 UB content 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01
Kidneys 2 Blood 1 3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03  3.80E-03
Other 1 Blood 1 9.90E-02  9.90E-02 9.90E-02 9.90E-02 9.90E-02  9.90E-02
Other 2 Blood 1 2.31E-02  2.31E-02 231E-02  231E-02  2.31E-02  2.31E-02
Other 3 Blood 1 9.50E-04  9.50E-04  9.50E-04 9.50E-04 9.50E-04 9.50E-04
Cort surface  Blood 1 7.92E-02  7.92E-02  7.92E-02 7.92E-02 7.92E-02  7.92E-02
Trab surface  Blood 1 7.92E-02  7.92E-02  7.92E-02 7.92E-02 7.92E-02  7.92E-02
Cort surface  Cort volume  1.98E-02  1.98E-02  1.98E-02 1.98E-02 1.98E-02  1.98E-02
Trab surface  Trab volume 1.98E-02  1.98E-02  1.98E-02 1.98E-02 1.98E-02  1.98E-02
Cort volume  Blood 1 8.22E-03  2.88E-03 1.53E-03  9.04E-04 521E-04 8.21E-05
Trab volume  Blood 1 8.22E-03  2.88E-03 1.81E-03 1.32E-03  9.59E-04  4.93E-04

UB, urinary bladder; SI, small intestine; Cort, cortical; Trab, trabecular.
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3269  31.1.3.3. Treatment of radioactive progeny

3270 (332) The treatment of radioactive progeny produced in systemic compartments after intake
3271  ofaradioisotope of platinum is described in Section 34.2.3.3. of Publication 151 (ICRP, 2022).

3272 31.2. Dosimetric data for platinum

3273  Table 31.3. Committed effective dose coefficients (Sv Bq™!) for the inhalation or ingestion of
3274 9Pt compounds.

Effective dose coefficients (Sv Bq")

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 22E-10 1.8E-10 9.7E-11  59E-11 4.1E-11  4.0E-11
Type M, default 58E-10 5.1E-10 2.7E-10 1.7E-10  1.2E-10  1.1E-10
Type S 3.8E-09 3.8E-09 2.7E-09 2.0E-09 2.0E-09 2.0E-09
Ingested materials
Soluble forms and platinum in diet 3.8E-11 23E-11 1.2E-11 8.1E-12 4.8E-12 3.5E-12
Metal, oxide and hydroxide 2.0E-11  1.6E-11  7.7E-12  5.5E-12  3.0E-12  1.8E-12

3275  AMAD, activity median aerodynamic diameter.
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32. GOLD (Z=79)

32.1. Routes of Intake
32.1.1. Inhalation

(333) Information is available from experimental studies on the behaviour of gold
nanoparticles (particles with at least one dimension < 100 nm) and gold-labelled insoluble
particles after deposition in the respiratory tract. For details see Section 35 of Publication 151,
ICRP 2022. Absorption parameter values and types, and associated f4 values for particulate
forms of gold are given in Table 32.1 [taken from Section 35 of Publication 151 (ICRP, 2022)].

Table 32.1. Absorption parameter values for inhaled and ingested gold.

Absorption parameter values”

Inhaled particulate materials £ s (d7D) ss (d7h
Default parameter values’

Absorption type  Assigned forms

F - 1 30 -
M5 - 0.2 3 0.005
S Elemental gold, 0.01 3 1x10*

gold-labelled Teflon

Ingested materials'

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
Gold in diet 0.4 0.2 0.2 0.2 0.2 0.2
All other forms 0.2 0.1 0.1 0.1 0.1 0.1

“It is assumed that the bound state can be neglected for gold (i.e. =0). The values of s for Type F, M, and S
forms of gold (30, 3, and 3 d™', respectively) are the general default values.

fMaterials (e.g. elemental gold) are listed here where there is sufficient information to assign to a default
absorption type, but not to give specific parameter values [see Section 35 of Publication 151 (ICRP 2022)].

*For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of gold applicable to the age-group of interest (e.g. 0.1 for adults).
SDefault Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type; for example, if the form is unknown, or if the form is known but there is
no information available on the absorption of that form from the respiratory tract.

IActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (e.g. 0.2 for adults).

32.1.2.  Ingestion
32.1.2.1. Adults

(334) Based on human and animal studies, the value of fo = 0.1 was used for all chemical
forms of gold in Publications 72 (ICRP, 1995¢) and /51 (ICRP, 2022). In Publication 100
(ICRP, 2006, Table D.23) a value of 0.4 was considered for organic compounds. Since the
available studies indicate significant variability of gastro-intestinal absorption, an intermediate
value of fao = 0.2 is adopted here for gold in diet and the value of fa = 0.1 is used for all other
forms of gold ingested by adult members of the public.
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32.1.2.2. Children

(335) Applying the approach of Publication 56 (ICRP, 1990), fa = 0.4 is used for ingestion
of dietary gold by infants and fa = 0.2 is used for ingestion of other forms of gold by infants.
The adult values are used for older children: fa = 0.2 for ingestion of dietary gold and fa = 0.1
for ingestion of all other chemical forms.

32.1.3. Systemic distribution, retention and excretion of gold
32.1.3.1. Biokinetic data

(336) The biokinetics of gold has been investigated in human subjects and laboratory
animals in studies related to its medical applications, particularly the use of stable gold for
treating rheumatoid arthritis and short-lived radioactive gold as an imaging agent (Freyberg, et
al., 1942; Block, et al., 1942, 1944; Jeffrey et al., 1958; Lawrence, 1961; Rubin et al., 1967;
McQueen and Dykes, 1969; Mascarenhas et al., 1972; Sugawa-Katayama et al., 1975; Gottlieb,
1983; Jellum et al., 1980; Massarella and Pearlman, 1987; Andersson et al., 1988; Bacso et al.,
1988; Brihaye and Guillaume, 1990). Other studies have addressed the biological behaviour of
gold as a radioactive contaminant in the workplace or environment (Durbin, 1960; Fleshman
et al., 1966; Chertok and Lake, 1971a, 1971b, 1971c; Silva et al., 1973).

(337) Development of a representative biokinetic model for systemic gold in the human
body is complicated by the strong dependence in the distribution and residence times on several
factors including mode of administration, chemical form, and administered mass.

(338) For gold administered in low mass and relatively soluble form, it appears that much
of the absorbed or injected amount is excreted in the first week or two, but a nontrivial portion
may be retained up to several months or possibly years. Excretion is primarily in urine. Much
of the retained amount generally is found in the blood, liver, and kidneys. Most of the gold
found in blood is bound to plasma proteins.

32.1.3.2. Biokinetic model for systemic gold

(339) The biokinetic model for systemic gold applied in Publication 30, Part 2 (ICRP, 1980)
and Publication 68 (ICRP, 1994) depicts a uniform distribution of absorbed gold (other than
an elevated concentration in the urinary bladder content) and a biological half-time of 3 d.
Publication 151 (ICRP, 2022) introduced a more conservative biokinetic model for gold in
view of the widely varying systemic distributions and retention times for gold reported in the
literature. The biokinetic model for gold applied to workers in Publication 151 (ICRP, 2022)
depicts a nonuniform distribution of absorbed gold with relatively high concentrations in blood,
liver, and kidneys, and a relatively long retention time compared with the previous ICRP model.
For example, for the relatively long-lived isotope ’Au (Ti, = 186.1 d), the model of
Publication 151 predicts a total-body content of about 24% of administered activity 30 d after
injection to blood, with about one-third of the retained amount in blood, liver, and kidneys.

(340) The biokinetic model for systemic gold applied to workers in Publication 151 (ICRP,
2022) is applied in this report intake at any age. The structure of the biokinetic model for
systemic gold used in this report is shown in Fig. 32.1. Transfer coefficients are listed in Table
32.2.
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3348  Fig. 32.1. Structure of the biokinetic model for systemic gold.
3349

3350  Table 32.2. Age-specific transfer coefficients for gold.

Transfer coefficients (d!)

Pathway 100 d ly Sy 10y 15y Adult

Blood 1 Blood 2 1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01
Blood 1 Kidneys 1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01
Blood 1 Liver 1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01
Blood 1 Other 1 1.80E-01  1.80E-01  1.80E-01  1.80E-01  1.80E-01  1.80E-01
Blood 1 Other 2 1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01
Blood 1 UB content 3.00E-01  3.00E-01  3.00E-01  3.00E-01  3.00E-01  3.00E-01
Blood 1 RC content 1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01  1.00E-01
Blood 1 Trab surface ~ 1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02
Blood 1 Cort surface  1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02  1.00E-02
Blood 2 Blood 1 1.39E-01  1.39E-01  1.39E-01 1.39E-01  1.39E-01  1.39E-01
Kidneys UB content 6.93E-02 6.93E-02 6.93E-02 6.93E-02  6.93E-02  6.93E-02
Liver Blood 1 6.93E-02  6.93E-02 6.93E-02 6.93E-02  6.93E-02  6.93E-02
Other 1 Blood 1 6.93E-02 6.93E-02 6.93E-02 6.93E-02  6.93E-02  6.93E-02
Other 2 Blood 1 1.39E-02  1.39E-02  1.39E-02  1.39E-02  1.39E-02  1.39E-02
Trab surface  Blood 1 6.93E-02 6.93E-02 6.93E-02 6.93E-02  6.93E-02  6.93E-02
Cort surface  Blood 1 6.93E-02  6.93E-02 6.93E-02 6.93E-02  6.93E-02  6.93E-02

3351 UB, urinary bladder; SI, small intestine; Cort, cortical; Trab, trabecular.
3352 32.1.3.3. Treatment of radioactive progeny

3353 (341) The treatment of radioactive progeny produced in systemic compartments after intake
3354  of aradioisotope of gold is described in Section 35.2.3.3. of Publication 151 (ICRP, 2022).
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3355  32.2. Dosimetric data for gold

3356  Table 32.3. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
3357  '%Au compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pm AMAD aerosols)
Type F 1.2E-09 7.8E-10 3.8E-10 2.4E-10 1.6E-10 1.5E-10
Type M, default 3.4E-09 2.8E-09 1.6E-09 1.0E-09 7.5E-10 7.4E-10

Type S, elemental gold, 6.4E-09 5.7E-09 3.2E-09 2.1E-09 1.5E-09 1.5E-09
gold-labelled Teflon

Ingested materials
Gold in diet 1.8E-09 7.3E-10 3.9E-10 2.6E-10 1.7E-10 1.5E-10

All other forms 9.8E-10 4.6E-10 2.5E-10 1.6E-10 1.1E-10 1.0E-10
3358  AMAD, activity median aerodynamic diameter.

140



3359

3360

3361

3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373

3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385

3386

I‘ni DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

33. MERCURY (Z=80)

33.1. Routes of Intake
33.1.1. Inhalation

(342) Comprehensive information on the behaviour of inhaled mercury vapour is available
from both volunteer experiments and animal studies. Some information is also available from
experimental studies of volatile organic compounds and particulate forms. Several studies have
been reported following accidental intakes of mercury radioisotopes. For details see Section 36
of Publication 151 (ICRP, 2022). Absorption parameter values and Types, and associated fa
values for gas and vapour forms of mercury are given in Table 33.1 and for particulate forms
in Table 33.2 [both taken from Section 36 of Publication 151 (ICRP, 2022)].

(343) Exposures to both gas/vapour and particulate forms of mercury have occurred, and it
is therefore recommended in this series of documents that 50% particulate and 50% gas/vapour
should be assumed in the absence of information (ICRP, 2002a).

Table 33.1. Deposition and absorption for gas and vapour compounds of mercury.

Percentage deposited (%) Absorption®
Chemical form/origin  Total ET; ET. BB Bb Al £ ss(dD s (dh
Mercury Vapour 80 0 2 1 2 75 0.94 1000 0.14

Age-dependent absorption from the alimentary tract, fi

Chemical form/origin 3 months 1 year 5 years 10 years 15 years Adult
Mercury Vapour 0.47 0.094 0.094 0.094 0.094 0.094

ET,, anterior nasal passage; ET», posterior nasal passage, pharynx and larynx; BB, bronchial; bb, bronchiolar; Al,
alveolar-interstitial.

*Percentage deposited refers to how much of the material in the inhaled air remains in the body after exhalation.
Almost all inhaled gas molecules contact airway surfaces but usually return to the air unless they dissolve in, or
react with, the surface lining. The distribution between regions is material specific: 2% ET», 1% BB, 2% bb, and
75% Al

fFor mercury, it is assumed that a bound fraction f;, = 0.24 with an uptake rate s, = 2.1 d"! is applied throughout
the respiratory tract except in the ET; region.

'For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied: i.e. the product of £; for the absorption type
(or specific value where given) and the fa value for ingested soluble forms of mercury (e.g. 0.1 for adults and 0.5
for infants).
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Table 33.2. Absorption parameter values for inhaled and ingested mercury.

Absorption parameter values”

Inhaled particulate materials £ s (d) 55 (d)
Default parameter values’™

Absorption type Assigned forms

F - 1 30 —
Mm$ Mercuric oxide 0.2 3 0.005
S - 0.01 3 1x10*

Ingested materials”

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All inorganic forms 0.5 0.1 0.1 0.1 0.1 0.1
Methyl mercury 1 1 1 1 1 1
Other organic forms 0.8 0.4 0.4 0.4 0.4 0.4

and mercury in diet

“For mercury, it is assumed that a bound fraction f, = 0.24 with an uptake rate s, = 2.1 d"! is applied throughout
the respiratory tract except in the ET; region. The values of s for Type F, M and S forms of mercury (30, 3 and 3
d™! respectively) are the general default values.

fMaterials (e.g. mercuric oxide) are generally listed here where there is sufficient information to assign to a default
absorption type, but not to give specific parameter values [see Section 36 of Publication 151 (ICRP, 2022)].

‘For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of £; for the absorption type
(or specific value where given) and the fa value for ingested soluble forms of mercury applicable to the age-group
of interest (e.g. 0.1 for adults).

SDefault Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

TActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fi for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (1).

33.1.2.  Ingestion
33.1.2.1. Adults

(344) Conversion to methyl mercury by marine organism is an important step of the
population exposure to mercury (Nelson et al., 1971). Human and animal studies indicate that
elemental mercury is virtually unabsorbed; inorganic salts exhibit absorption in the order of 8—
15%, and the absorption of methyl mercury from the gastrointestinal tract appears to be almost
complete in humans and animals (Cooper, 1985; Nordberg and Sherfving, 1972; Kojima and
Fujita, 1973, ATSDR, 1999; EFSA, 2012). The fractional absorption of mercuric acetate is
about 0.2 and that of phenyl mercury salts is typically 0.4 or higher. Methyl mercury shows
some absorption from the stomach (Sasser et al., 1978).

(345) In Publication 151 (ICRP, 2022), a value of fo = 0.1 was used for all forms of mercury
ingested at the workplace. In Publication 72 (ICRP, 1995¢), fractional absorptions of 0.02, 1
and 0.4 were used respectively for ingestion of inorganic forms of mercury, methyl mercury
and other organic forms of mercury. In this publication, fa values of 0.1, 1 and 0.4 are adopted
respectively for ingestion of inorganic forms of mercury, methyl mercury and other organic
forms of mercury by adult members of the public.
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33.1.2.2. Children

(346) In one-week suckling mice, the fractional absorption of mercuric chloride was
increased to 38%, compared with 1% in adults (7% for adult mice fed milk diet; Kostial et al.,
1978). The 1-h duodenal absorption of mercuric chloride was also significantly greater in 6-d-
old neonatal rats (18.1%) as compared to 23-d weanling (7.3%) or mature animals (3.6%;
Walsh, 1982). These data indicate an increase of gastrointestinal absorption of inorganic
mercury in the order of a factor of five at youngest ages. Consistently, fa values of 0.5, 1 and
0.8 are adopted here respectively for ingestion of inorganic forms of mercury, methyl mercury
and other organic forms of mercury by infants. For older children, the adult values of fAo = 0.1,
1 and 0.4 respectively are adopted.

33.1.3.  Systemic distribution, retention and excretion of mercury

33.1.3.1. Biokinetic data

(347) This section summarizes data on the systemic behaviour of three environmentally
important forms of mercury and describes the models applied to these forms in this report:
divalent inorganic mercury (Hg*"), mercury vapor (Hg® vapor), and methyl mercury (CHsHg",
also written as MeHg"). These forms initially exhibit distinct kinetics in the body, but Hg®
(always used below to refer to mercury vapor) and MeHg" are both converted to Hg?" in the
body. The conversion occurs quickly for Hg® but over a period of several weeks for MeHg".
The biokinetic models for Hg’ and MeHg" depict their initial distributions in systemic
repositories and their subsequent movement into compartments of the systemic model for Hg?",
after which the behaviour of Hg is governed by the biokinetic model for systemic Hg*".

(a)  Data for mercury vapor and divalent inorganic mercury

(348) Data on the systemic kinetics of Hg® and Hg?" are discussed together because their
systemic behaviours are often investigated in the same studies, as Hg® taken up by RBC or
tissues is soon oxidized to Hg*".

(349) Blood clearance of Hg has been investigated in controlled studies of human subjects
who inhaled Hg? for a brief period (Hursh et al., 1976, 1980; Cherian et al., 1978; Sandborgh-
Englund et al., 1998; Jonsson et al., 1999) and in studies of workers after their removal from
chronic exposure to Hg” (Barregérd et al., 1992; Sallsten et al., 1993). A substantial portion of
inhaled Hg® moves rapidly into blood, and a smaller portion is oxidized to Hg*'in the lungs,
followed by slower absorption to blood. Hg” that enters blood is rapidly taken up by red blood
cells (RBC) or tissues, or exhaled (Teisinger and Fiserova-Bergerova, 1965; Magos et al.,
1989). The portion entering RBC and tissues is soon oxidized to Hg*".

(350) Data for human subjects acutely exposed to Hg® under controlled conditions and data
for workers just removed from exposure to Hg? indicate an initial removal half-time of Hg?"
from blood of about 3 d. A relatively long-term component of blood retention (half-time, 18-
45 d) has been observed in workers removed from chronic exposure to Hg. Studies of animals
administered Hg?" salts indicate an initially rapid (minutes to hours) disappearance of mercury
from blood and longer retention of a substantial portion of the amount entering blood (Rothstein
and Hayes, 1960; Clarkson and Rothstein, 1964).

(351) The kidneys have a high affinity for mercury. In laboratory animals exposed briefly
to Hg” via inhalation, the kidneys gradually accumulated as much as 25-35% of the initial body
burden over a period of days. The kidneys initially took up only a few percent of inhaled Hg’
but continued to accumulate Hg?" that was absorbed more slowly from the lungs to blood or
returned from relatively short-term systemic repositories to blood. External measurements on
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human subjects acutely exposed to Hg’ or Hg?>" compounds also show considerable
accumulation of mercury in the kidneys (Hursh et al., 1976, 1980; Newton and Fry, 1978).
Autopsy data from studies of persons environmentally or occupationally exposed to mercury
showed a much higher concentration of Hg in the kidneys than in the rest of the body (Barregard
et al., 1999; Zhu et al., 2010).

(352) External measurements on human subjects following brief inhalation of Hg? indicate
a mean biological half-time of 52 d (range, 35-90 d) for mercury in the kidneys (Hursh et al.
1976, 1980). External measurements on subjects accidentally exposed to aerosols of mercury
indicate a mean half-time of 49 d (range, 37-60 d) (Newton and Fry, 1978).

(353) In laboratory animals exposed briefly to Hg® in air, the liver typically accumulated 3-
6% (range, 2-18%) of the initial body burden shortly after intake. The collective data suggest
a slight rise in the liver content over the first few days after inhalation of Hg’. Higher initial
uptake by the liver was seen after intravenous injection with Hg?" than after inhalation of Hg’
(Hayes and Rothstein, 1962; Magos et al., 1989). Mercury was generally removed from the
liver with a half-time of a few days.

(354) Hg® carried in plasma to the brain readily crosses the blood-brain barrier. Hg® that
enters the brain is converted to Hg?*, which moves slowly across the blood-brain barrier to
blood. After acute inhalation of Hg® by squirrel monkeys, rats, mice, rabbits, and guinea pigs,
the peak mercury content in the brain typically was 1-2% of the initial body burden, which is
considerably higher than uptake of circulating Hg?" (Berlin et al., 1966, 1969). The subsequent
pattern of uptake and retention by brain is broadly consistent across species, despite the large
variation in brain size as a fraction of total-body weight. Data for laboratory animals indicate
a biological half-time on the order of 10 d for the preponderance of Hg?" deposited in the brain.
External measurements over the head in human subjects suggest half-times in the range 14-29
d (Hursh et al., 1976, 1980; Newton and Fry, 1978). Long-term retention of a small portion of
mercury entering the brain could not be dismissed in human or laboratory animal studies.

(355) More than half of Hg or Hg?* entering blood is deposited in massive soft tissues such
as muscle, skin, and fat. The mercury that accumulates in these tissues declines over days or
weeks as it redistributes largely to the kidneys and to a lesser extent to the liver. After inhalation
of Hg? by rats for a period of 5 h, the kidneys and liver accounted for about 20% of retained
mercury at the end of exposure, 40% after 1 d, 50% after 5 d, and 67% after 15 d (Hayes and
Rothstein, 1962). In rats injected with Hg*", kidneys and liver accounted for about 10% of the
systemic burden after 4 h, 40% after 1 d, 70% after 6 d, 88% after 15 d, and 91% after 52 d
(Rothstein and Hayes, 1960). External measurements on human subjects exposed to Hg?" also
indicate that much of the mercury deposited in soft tissues other than kidneys is removed over
a few weeks.

(356) Urinary mercury appears to originate predominantly from Hg?" stored in the kidneys
(Barregard, 1993; Clarkson, 1997). In human subjects, the peak concentration of mercury in
urine occurs 2-3 weeks after short-term inhalation of Hg’ (Barregard, 1993), in parallel with
the peak kidney content. Following inhalation of Hg®, more than half of absorbed Hg*" is
removed from the body in urine. Initially, the rate of faecal excretion is much higher than that
of urinary excretion, but this relation reverses over a few weeks. At times remote from exposure,
daily urinary losses are considerably larger than faecal losses (Hursh et al., 1976, 1980; Newton
and Fry, 1978; Jonsson et al., 1999). Analysis of excretion data for human subjects who inhaled
Hg® for a short period (Jonsson et al., 1999) indicate that cumulative faecal excretion
represented roughly 25-30% of the initial body burden. Results of animal studies indicate that
faecal excretion of mercury may arise from a combination of biliary secretion and other
secretions across the intestinal wall that are most prominent in the small intestine (Gregus and
Klaassen, 1986; Zalups, 1998).
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(357) In addition to losses in urine and faeces, mercury is removed from the systemic fluids
and tissues by exhalation of Hg®, and small amounts are lost through sweat, hair, and other
routes. Exhalation of Hg® occurs over a period of at least several days, either after
administration of mercuric salts or inhalation of Hg® (Clarkson and Rothstein, 1964; Hursh et
al., 1976; Cheria et al., 1978; Berlin, 1986; Jonsson et al., 1999). Hursh et al. (1976) estimated
that approximately 7% of the initial body burden was exhaled in expired air over the first few
days after acute inhalation of Hg® by human subjects. The rate of exhalation of mercury was
highest soon after intake and declined with a half-time of 1-2 d.

(358) Rahola et al. (1972) administered Hg** orally to 10 healthy adult humans (5 males and
5 females). Two subjects were given 2**Hg(NOs), in water, and the other eight subjects were
given 2*Hg bound to calf-liver paste. On average about 15% of the administered activity was
absorbed to blood. The mean biological half-life of the absorbed mercury as measured from
about 10-15 d to about 70 d post intake was 42 + 3 (SD) d. Estimated mean half-lives in females
and males were 37 = 3 d and 48 + 5 d, respectively. Little activity was retained in blood beyond
the first day after intake. During the first 50 d the ratio of the tracer in RBC to that in plasma
was about 0.4.

(b)  Data for methyl mercury

(359) Aberg et al. (1969) studied the distribution and excretion of ?°*Hg following its oral
administration as CH3?**HgNOj3 to three healthy males, ages 37-44 y. Urine and faeces were
collected up to 10 d from Subject A, 49 d from Subjects B and C, and occasionally from Subject
B from 50-71 d post administration. Blood samples were collected occasionally from all three
subjects in the first two days. Hair samples were collected from Subjects B and C at regular
haircuts. External measurements of activity in the total body and selected regions of the body
were performed on all subjects up to ~ 8 mo. The concentration of activity in RBC was roughly
10 times that in blood plasma from 15 min to 24 d post administration. The blood content
peaked at 3-6 h. Excretion was primarily via faeces and represented 13.0, 13.6, and 14.2% of
the administered tracer (adjusted for radioactive decay) through 10 d for the 3 subjects and 33.4
and 34.7% through 49 d for Subjects B and C, respectively. An estimated average of 6% of the
ingested activity was not absorbed to blood or soon secreted back into the intestines. Loss in
urine represented <0.3% of the administered amount through 10 d for the 3 subjects and about
3.3% through 49 d for each of the subjects B and C. A maximum concentration in hair of
0.12% per g hair was found 40-50 d post ingestion. The liver accumulated roughly half and the
head (including hair) roughly a tenth of the administered amount. Activity was lost more slowly
from the head than other body regions. Total-body retention after the first few days was closely
fit by a single exponential term for each subject. The indicated biological half-times for the 3
subjects were 70.4, 73.7 d, and 74.2 d. The authors pointed out that the observed half-times
were consistent with values estimated in studies involving fish-eating subjects who changed to
diets without fish.

(360) Miettinen et al. (1971) studied the kinetics of 2“*Hg-labeled MeHg" in 15 healthy
adults (9 males and 6 females, ages 27-48 y) over ~8 mo after a single ingestion in fish. During
the first week after intake, daily faecal and urinary excretion averaged about 1.9% and 0.01%,
respectively, of the ingested activity. Activity in blood represented about 9-10% of the ingested
amount in the early days after intake, with ~90% of the blood content in RBC. The biological
half-time of 2**Hg in RBC averaged ~50 d in 5 men and 1 woman. Mean total-body half-times
were 71 d (range, 52-88 d) for females and 79 d (range, 70-93 d) for males.

(361) Smith et al. (1994) studied the biokinetics of MeHg" separately from that of its
metabolite, Hg?*, over a period of 70 d after intravenous administration of 2°*Hg-labeled
MeHg" to 7 healthy young adult males. Activity was measured in urine, faeces, and blood in
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MeHg" separated chemically from Hg?*. Total-body retention of >’ Hg representing both Hg*"
and MeHg" was measured externally. The mean biological half-time of activity in blood was
~45 d. The mean biological half-time of MeHg" in the total body was estimated as 44 d. Over
the 70-d study ~31% of the injected activity was excreted in faeces, and ~4% was excreted in
urine. The authors concluded that “whole-body MeHg" behaves as a single kinetic
compartment.”

(362) Smith and Farris (1996) examined implications of data of Aberg et al. (1969) and
Miettinen et al. (1971) summarized above, considering both a one-compartment and a two-
compartment model of retention and excretion pathways of MeHg" and its metabolite, Hg?".
They concluded that a two-compartment model yielded the better fit to the data, particularly
the rising daily percentage of mercury in urine over time. Using the two-compartment model,
they estimated the biological half-time of whole-body MeHg" alone as 51 d based on the data
of Aberg et al. (1969) and 56 d based on the data of Miettinen et al. (1971), compared with the
half-time of 44 d determined by Smith et al. (1994).

33.1.3.2. Biokinetic model for systemic mercury

(363) The biokinetic models for systemic mercury adopted in this report address mercury
entering blood as Hg? (vapor), Hg?*, or MeHg". Inhalation is the only mode of intake of Hg’
addressed in this report. Ingestion is the only mode of intake of MeHg" addressed. The model
for Hg?" is applied to intake of Hg?" via either ingestion or inhalation.

(364) The models depict initially distinct kinetics of Hg’, Hg?*, and MeHg" following their
entry into the systemic circulation but convergence of kinetics over time due to conversion of
Hg’ and MeHg" to Hg?". The conversion is assumed to happen rapidly for Hg” but over a period
of several weeks for MeHg". For all three forms of mercury, the transfer coefficients developed
for adults are applied to all ages due to a paucity of age-specific biokinetic data.

(365) The models for Hg” and Hg?* were taken from Publication 151 (ICRP, 2022) but were
modified by removal of explicitly identified bone compartments, in view of uncertainties in the
level and locations of mercury accumulation in bone (Ciosek et al., 2023; Zafar et al., 2024).
In the present versions of the models for Hg® and Hg** (and MeHg"), activity in bone is treated
as a mass fraction of “Other”.

(a)  Biokinetic models for divalent inorganic mercury and mercury vapor

(366) The structure of the systemic model for divalent inorganic mercury is shown in Fig.
33.1. The same structure (arranged differently), with an added blood compartment named
Plasma 0 and several arrows representing flow to or from Plasma 0, is applied to mercury vapor
(Fig. 33.2). Transfer coefficients for divalent inorganic mercury that enters the systemic
circulation are listed in Table 33.3. Transfer coefficients for mercury vapor that enters the
systemic circulation are listed in Table 33.4. The last 18 transfer coefficients in Table 33.3
(beginning with the transfer from Plasma 1 to RBC) are the transfer coefficients for divalent
inorganic mercury listed in Table 33.3. The models for both forms of mercury were based
primarily on data for human subjects including data on blood clearance, uptake and retention
in major repositories or total body following acute intake of a mercury tracer, and the
distribution of mercury in occupationally or non-occupationally exposed persons. The data for
human subjects were supplemented with data for laboratory animals where information for
humans was sparse.

(367) In the model for mercury vapor, blood is divided into three plasma compartments and
a fourth compartment representing red blood cells. Two plasma compartments, called Plasma 0
and Plasma 1, are used to account for differences in the rates of disappearance of absorbed
mercury vapor and absorbed divalent mercury from plasma and differences in their initial
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distributions. Mercury vapor absorbed from the respiratory tract to blood is assigned to
Plasma 0, and absorbed divalent mercury absorbed to blood from the respiratory or alimentary
tract is assigned to Plasma 1. A third compartment, called Plasma 2, is used to account for a
relatively long-term component of retention of divalent inorganic mercury in plasma associated
with binding to plasma proteins.

(368) The fractions of inhaled mercury vapor that are assumed to enter the systemic
circulation as mercury vapor and as divalent inorganic mercury are described in terms of two
absorption parameters, f; (highly mobile activity) and f, (“bound” activity) used in the ICRP’s
Human Respiratory Tract Model. The fraction of inhaled mercury vapor that is absorbed
rapidly into blood is f; x (1-fy). This fraction enters the systemic circulation as mercury vapor
depositing in the compartment named Plasma 0. The bound fraction, f,, and another slowly
absorbed fraction, (1-f;) x (1-f,), enter the systemic circulation as Hg?>* by depositing in the
compartment named Plasma 1; these two fractions represent divalent inorganic mercury formed
in lung tissues by oxidation of mercury vapor.

i Excreta
_Es_ralln_ 1_ i Plasma 2
Brain 2 \l‘/ /\T\
——— Liver
Other 1 Plasma 1
Otrer? | |
J, J, '\h Sl content
RBC
Kidneys \L
\L Colon
content
UB content
Urine Faeces

Fig. 33.1. Structure of the systemic biokinetic model for mercury inhaled or ingested as divalent
inorganic mercury. Absorbed activity is assigned to Plasma 1. RBC, red blood cells; UB,
urinary bladder; SI, small intestine.
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Other 1
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<] content

3627
3628  Fig. 33.2. Structure of the systemic biokinetic model for mercury inhaled as vapor. Absorbed

3629  activity is assigned to Plasma 0. RBC, red blood cells; UB, urinary bladder; SI, small intestine.
3630

3631  Table 33.3. Transfer coefficients for mercury inhaled or ingested as divalent inorganic mercury.

Transfer coefficients (d')

Pathway 100d ly 5y 10y 15y Adult
Plasmal RBC 4.80E-01 4.80E-01 4.80E-01 4.80E-01 4.80E-01 4.80E-01

Plasma 1 Plasma 2 2.40E+00 2.40E+00 2.40E+00 2.40E+00 2.40E+00 2.40E+00
Plasma 1 Kidneys 7.20E+00 7.20E+00 7.20E+00 7.20E+00 7.20E+00 7.20E+00

Plasma 1 Liver 4.80E+00 4.80E+00 4.80E+00 4.80E+00 4.80E+00 4 .80E+00
Plasma 1 Brain 1 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02
Plasma 1  Other 1 5.23E+00 5.23E+00 5.23E+00 5.23E+00 5.23E+00 5.23E+00
Plasma 1  Other 2 7.26E-01 7.26E-01 7.26E-01 7.26E-01 7.26E-01 7.26E-01
Plasma 1  SI content 1.92E+00 1.92E+00 1.92E+00 1.92E+00 1.92E+00 1.92E+00
Plasma 1  Excreta 1.20E+00 1.20E+00 1.20E+00 1.20E+00 1.20E+00 1.20E+00
RBC Plasma 1 3.30E-01 3.30E-01 3.30E-01 3.30E-01 3.30E-01 3.30E-01

Plasma2 Plasma 1 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01
Kidneys  UB content 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02

Liver SI content 1.73E-01 1.73E-01 1.73E-01 1.73E-01 1.73E-01 1.73E-01
Brain 1 Plasma 1 3.29E-02 3.29E-02 3.29E-02 3.29E-02 3.29E-02 3.29E-02
Brain 1 Brain 2 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03

Brain 2 Plasma 1 3.80E-04 3.80E-04 3.80E-04 3.80E-04 3.80E-04 3.80E-04
Other 1 Plasma 1 3.47E-02 3.47E-02 3.47E-02 3.47E-02 3.47E-02 3.47E-02
Other 2 Plasma 1 6.93E-03 6.93E-03 6.93E-03 6.93E-03 6.93E-03 6.93E-03
3632  RBC, red blood cells; UB, urinary bladder; SI, small intestine.
3633
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Table 33.4. Transfer coefficients for mercury inhaled as vapor

Transfer coefficients (d™!)

Pathway 100d ly S5y 10y 15y Adult

Plasma0 RBC 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
Plasma 0  Brain 1 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01
Plasma 0  Kidneys 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
Plasma 0  Liver 6.00E+01 6.00E+01 6.00E+01 6.00E+01 6.00E+01 6.00E+01
Plasma 0  Other 1 6.50E+02  6.50E+02  6.50E+02  6.50E+02  6.50E+02  6.50E+02
Plasma 0  Excreta 7.00E+01 7.00E+01 7.00E+01 7.00E+01 7.00E+01 7.00E+01
Plasmal  RBC 4.80E-01 4.80E-01 4.80E-01 4.80E-01 4.80E-01 4.80E-01
Plasmal  Plasma 2 2.40E+00  2.40E+00  2.40E+00  2.40E+00  2.40E+00  2.40E+00
Plasma 1 Kidneys 7.20E+00  7.20E+00  7.20E+00  7.20E+00  7.20E+00  7.20E+00
Plasma 1 Liver 4.80E+00  4.80E+00  4.80E+00  4.80E+00  4.80E+00  4.80E+00
Plasma 1  Brain 1 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02
Plasma 1 Other 1 5.23E+00  5.23E+00  5.23E+00  5.23E+00  5.23E+00  5.23E+00
Plasma 1 Other 2 7.26E-01 7.26E-01 7.26E-01 7.26E-01 7.26E-01 7.26E-01
Plasma 1 SI content 1.92E+00 1.92E+00 1.92E+00 1.92E+00 1.92E+00 1.92E+00
Plasma 1 Excreta 1.20E+00 1.20E+00 1.20E+00 1.20E+00 1.20E+00 1.20E+00
RBC Plasma 1 3.30E-01 3.30E-01 3.30E-01 3.30E-01 3.30E-01 3.30E-01
Plasma2  Plasma 1 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01
Kidneys UB content 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02
Liver SI content 1.73E-01 1.73E-01 1.73E-01 1.73E-01 1.73E-01 1.73E-01
Brain 1 Plasma 1 3.29E-02 3.29E-02 3.29E-02 3.29E-02 3.29E-02 3.29E-02
Brain 1 Brain 2 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03
Brain 2 Plasma 1 3.80E-04 3.80E-04 3.80E-04 3.80E-04 3.80E-04 3.80E-04
Other 1 Plasma 1 3.47E-02 3.47E-02 3.47E-02 3.47E-02 3.47E-02 3.47E-02
Other 2 Plasma 1 6.93E-03 6.93E-03 6.93E-03 6.93E-03 6.93E-03 6.93E-03

RBC, red blood cells; UB, urinary bladder; SI, small intestine.
(b)  Biokinetic model for systemic methyl mercury

(369) The structure of the biokinetic model for methyl mercury following its absorption to
blood is shown in Fig. 33.3. Transfer coefficients are listed in Table Hg-3. The last 18 transfer
coefficients in Table 33.5 (beginning with the transfer from Plasma 1 to RBC) are the transfer
coefficients for systemic Hg?" listed in Table 33.3. The transfer coefficients describing the
behaviour of absorbed MeHg" in the body, before it is converted to Hg?*, are set for reasonable
agreement with the generally consistent results of the human studies for ingested or
intravenously injected MeHg" summarized above. These data include tracer (***Hg) studies of
total-body retention, blood clearance, systemic distribution, urinary and faecal excretion rates,
cumulative excretion estimates, and levels of accumulation in hair for periods up to ~8 months
following oral administration to a total of 18 healthy adult human subjects (Aberg et al., 1969;
Miettinen et al. (1971); and a 70-d study of the kinetics of MeHg", separately from that of its
metabolite, Hg*", following intravenous administration to 7 healthy adult subjects (Smith et al.,
1994; Smith and Farris, 1996).

149



I‘Ri DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

Absorbed MeHg*
| 5| Skin
Brain 3 _Brain 1] |
Brain 2 Plasma 2
e RBC 1
Plasma 3 Plasma 4 Plasma 1
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Other3 | k- - - - 1
—| Other 2
Liver 3
Liver2 [—=| Liver1 [~
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Kidneys 21— Kidneys 1
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3651
3652  Fig. 33.3. Structure of the systemic biokinetic model for mercury inhaled or ingested as methyl

3653  mercury. RBC, red blood cells; UB, urinary bladder; SI, small intestine.
3654
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3655  Table 33.5. Transfer coefficients for mercury inhaled or ingested as methyl mercury.
Transfer coefficients (d')

Pathway 100d ly S5y 10y 15y Adult

Plasma 3 Brain 3 1.60E+01  1.60E+01  1.60E+01  1.60E+01  1.60E+01  1.60E+01
Plasma 3 RBC2 2.00E+01  2.00E+01  2.00E+01  2.00E+01  2.00E+01  2.00E+01
Plasma 3 Plasma 4 2.00E+00  2.00E+00  2.00E+00  2.00E+00  2.00E+00  2.00E+00
Plasma 3 Other 3 2.40E+01  2.40E+01  2.40E+01  2.40E+01  2.40E+01  2.40E+01
Plasma 3 Liver 3 1.50E+01  1.50E+01  1.50E+01  1.50E+01  1.50E+01  1.50E+01
Plasma 3 Liver 2 9.50E+01  9.50E+01  9.50E+01  9.50E+01  9.50E+01  9.50E+01
Plasma 3 Kidneys 2 2.00E+01  2.00E+01  2.00E+01  2.00E+01  2.00E+01  2.00E+01
Plasma 3 Skin 8.00E+00  8.00E+00  8.00E+00  8.00E+00  8.00E+00  8.00E+00
Plasma 4 Plasma 1 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02
Brain 3 Brain 1 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02
RBC2 Plasma 1 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02
Kidneys2  Kidneys 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02
Other 3 Other 1 1.23E-02 1.23E-02 1.23E-02 1.23E-02 1.23E-02 1.23E-02
Other 3 Other 2 1.70E-03 1.70E-03 1.70E-03 1.70E-03 1.70E-03 1.70E-03
Liver 2 Liver 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02
Liver 3 SI content 2.31E-01 2.31E-01 2.31E-01 2.31E-01 2.31E-01 2.31E-01
Skin Excreta® 5.00E-02 5.00E-02 5.00E-02 5.00E-02 5.00E-02 5.00E-02
Plasma 1 RBC 4.80E-01 4.80E-01 4.80E-01 4.80E-01 4.80E-01 4.80E-01
Plasma 1 Plasma 2 2.40E+00  2.40E+00  2.40E+00  2.40E+00  2.40E+00  2.40E+00
Plasma 1 Kidneys 7.20E+00  7.20E+00  7.20E+00  7.20E+00  7.20E+00  7.20E+00
Plasma 1 Liver 4.80E+00  4.80E+00  4.80E+00  4.80E+00  4.80E+00  4.80E+00
Plasma 1 Brain 1 4.80E-02  4.80E-02  4.80E-02  4.80E-02  4.80E-02  4.80E-02
Plasma 1 Other 1 523E+00  5.23E+00  5.23E+00  5.23E+00  5.23E+00  5.23E+00
Plasma 1 Other 2 7.26E-01 7.26E-01 7.26E-01 7.26E-01 7.26E-01 7.26E-01
Plasma 1 SI content 1.92E+00  1.92E+00  1.92E+00  1.92E+00  1.92E+00  1.92E+00
Plasma 1 Excreta 1.20E+00  1.20E+00  1.20E+00  1.20E+00  1.20E+00  1.20E+00
RBC Plasma 1 3.30E-01 3.30E-01 3.30E-01 3.30E-01 3.30E-01 3.30E-01
Plasma 2 Plasma 1 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01
Kidneys UB content  1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02
Liver SI content 1.73E-01 1.73E-01 1.73E-01 1.73E-01 1.73E-01 1.73E-01
Brain 1 Plasma 1 3.29E-02  3.29E-02  3.29E-02  3.29E-02 3.29E-02  3.29E-02
Brain 1 Brain 2 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03
Brain 2 Plasma 1 3.80E-04  3.80E-04  3.80E-04  3.80E-04  3.80E-04  3.80E-04
Other 1 Plasma 1 3.47E-02 3.47E-02 347E-02  3.47E-02 3.47E-02  3.47E-02

Other 2 Plasma 1 6.93E-03 6.93E-03 6.93E-03 6.93E-03 6.93E-03 6.93E-03

3656  RBC, red blood cells, UB, urinary bladder; SI, small intestine.
3657  “Excreta is primarily loss in hair.

3658  33.1.3.3. Treatment of radioactive progeny

3659 (370) The treatment of radioactive progeny produced in systemic compartments after intake
3660 ofaradioisotope of mercury is described in Section 36.2.3.3. of Publication 151 (ICRP, 2022).
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3661  33.2. Dosimetric data for mercury

3662  Table 33.6. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
3663  2%Hg compounds.

Effective dose coefficients (Sv Bq™')

Inhaled gases or vapours 3m ly Sy 10y 15y Adult
Mercury vapour 1.0E-08 7.6E-09 4.2E-09 2.6E-09 1.8E-09 1.7E-09

Inhaled particulate materials (1 pm AMAD aerosols)

Type F 4.8E-09 2.5E-09 1.3E-09 8.1E-10 5.6E-10 5.6E-10
Type M (default), mercuric ~ 5.0E-09 3.8E-09 2.2E-09 1.4E-09 1.1E-09 1.1E-09
oxide

Type S 6.0E-09 5.0E-09 2.8E-09 1.9E-09 1.5E-09 1.5E-09

Ingested materials
All inorganic forms 6.4E-09 1.2E-09 7.0E-10 4.5E-10 3.2E-10 3.0E-10

Methyl mercury 1.9E-08 1.4E-08 8.1E-09 5.5E-09 3.7E-09 3.6E-09

Other organic forms and 1.6E-08 6.1E-09 3.4E-09 2.3E-09 1.6E-09 1.5E-09
mercury in diet
3664  AMAD, activity median aerodynamic diameter.
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34. THALLIUM (Z=81)

34.1. Routes of Intake
34.1.1. Inhalation

(371) For thallium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of thallium are given in Table 34.1 [taken from Section 37 of Publication
151 (ICRP, 2022)].

34.1.2.  Ingestion

(372) Thallium is readily absorbed from the gastrointestinal tract, see Publication 151
(ICRP, 2022) for details. In Publications 72 (ICRP, 1995c) and 151, a fractional absorption of
1 was used for all compounds of the element. In this publication, fa = 1 is also adopted as the
default for all chemical forms of thallium ingested by members of the public of any age.

Table 34.1. Absorption parameter values for inhaled and ingested thallium.

Absorption parameter values”

Inhaled particulate materials f; s (d7) ss (d)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 1 1 1 1 1 1

“It is assumed that the bound state can be neglected for thallium (i.e. f; = 0). The values of s, for Type F, M and S
forms of thallium (30, 3 and 3 d~! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fa values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of thallium applicable to the age-group of interest (1).

Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (1).

34.1.3. Systemic distribution, retention and excretion of thallium
34.1.3.1. Biokinetic data

(373) The biokinetics of thallium has been investigated extensively in human subjects and
laboratory animals due to the importance of radio-thallium in nuclear medicine and its uses as
a poisonous substance (Gettler and Weiss, 1943; Barclay et al., 1953; Lie et al., 1960; Gehring
and Hammond, 1967; Potter et al., 1971; Bradley-Moore et al., 1975; Strauss et al., 1975;
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Atkins et al., 1977; Suzuki et al., 1978; Berger et al., 1983; Nakamura et al., 1985; Gregus and
Klaassen, 1986; Krahwinkel et al., 1988; Lathrop et al., 1989; Blanchardon et al., 2005;
Thomas et al., 2005). Its systemic behaviour resembles that of the alkali metals potassium and
rubidium (Gehring and Hammond, 1967; Strauss et al., 1975), but the residence time of
thallium in the body is less than that of potassium or rubidium due to a higher rate of clearance
from plasma to excretion pathways. Most reported removal half-times of thallium from the
adult human body are in the range 9-13 d (Atkins et al., 1977; Krahwinkel et al., 1988;
Blanchardon et al., 2005). Chen et al. (1983) reported two components of retention of thallium:
7d for 63% and 28 d for 37% of the injected amount. It appears that faecal excretion typically
represents more than half of cumulative excretion of thallium over a period of weeks following
its acute intake, although some relatively short-term human studies have suggested that
excretion of thallium is primarily in urine (Barclay et al., 1953; Lathrop et al., 1975; Atkins et
al., 1977; Blanchardon et al., 2005).

34.1.3.2. Biokinetic model for systemic thallium

(374) The biokinetic model for systemic thallium applied to workers in Publication 151
(ICRP, 2022) is applied in this report to all ages. The model structure is shown in Fig. 37.1.
The transfer coefficients are listed in Table 37.3.

(375) It is assumed that thallium leaves the central blood compartment (Plasma) with a half-
time of 5 min and is distributed as follows: 2.5% goes to red blood cells (RBC), 0.75% to the
urinary bladder content, 1.75% to the right colon content, 5% to kidneys, 5% to the liver, 7.5%
to trabecular bone surface, 7.5% to cortical bone surface, and 70% to the remaining tissues
(Other). Thallium is assumed to return from RBC to plasma at the rate 3.7 d™! and from tissue
compartments to plasma at the rate 2.5 d”!.

Other
‘Benee. . = = (Plosma
| | :
: Cortical surface || L IVer
| |
| |
| |
: Trabecular surface ||
L : T J/
RBC Colon content
Urinary | | Kidneys d’
Urine [« bladder Faeces
content

Fig. 37.1. Structure of the biokinetic model for systemic thallium.
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3723  Table 34.2. Age-specific transfer coefficients for thallium.

Transfer coefficients (d™!)

Pathway 100d ly Sy 10y 15y Adult

Plasma Liver 1.00E+01  1.00E+01 1.00E+01 1.00E+01  1.00E+01  1.00E+01
Plasma Kidneys 1.00E+01  1.00E+01  1.00E+01 1.00E+01 1.00E+01  1.00E+01
Plasma RBC 5.00E+00  5.00E+00  5.00E+00  5.00E+00  5.00E+00  5.00E+00
Plasma Trab surface  1.50E+01  1.50E+01  1.50E+01 1.50E+01  1.50E+01 1.50E+01
Plasma Cort surface 1.50E+01  1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Plasma Other 1.40E+02 1.40E+02 140E+02 1.40E+02 1.40E+02 1.40E+02
Plasma UB content 1.50E+00  1.50E+00 1.50E+00 1.50E+00 1.50E+00 1.50E+00
Plasma RC content 3.50E+00 3.50E+00 3.50E+00 3.50E+00 3.50E+00 3.50E+00
RBC Plasma 3.70E+00 3.70E+00 3.70E+00  3.70E+00 3.70E+00  3.70E+00
Liver Plasma 2.50E+00 2.50E+00 2.50E+00  2.50E+00 2.50E+00 2.50E+00
Kidneys Plasma 2.50E+00  2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00
Trab surface  Plasma 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00
Cort surface ~ Plasma 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00 2.50E+00
Other Plasma 2.50E+00 2.50E+00 2.50E+00  2.50E+00 2.50E+00 2.50E+00

3724 RBC, red blood cells; UB, urinary bladder; RC, right colon; Cort, cortical; Trab, trabecular.

3725  34.1.3.3. Treatment of radioactive progeny

3726 (376) The treatment of radioactive progeny produced in systemic compartments after intake
3727  ofaradioisotope of thallium is described in Section 37.2.3.3. of Publication 151 (ICRP, 2022).

3728  34.2. Dosimetric data for thallium

3729  Table 34.3. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of
3730 2Tl compounds.

Effective dose coefficients (Sv Bq!)

3m ly Sy 10y 15y Adult

Inhaled particulate materials (1 pum AMAD aerosols)

Type F 5.5E-10 4.0E-10 2.0E-10 1.4E-10 8.6E-11 8.3E-11
Type M, default 7.6E-10 6.0E-10 3.0E-10 2.2E-10 1.4E-10 1.4E-10
Type S 8.0E-10 6.4E-10 3.2E-10 2.3E-10 1.5E-10 1.5E-10
Ingested materials

All compounds 1.1E-09 7.9E-10 4.7E-10 3.1E-10 2.2E-10 2.1E-10

3731  AMAD, activity median aerodynamic diameter.

3732
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3733 Table 34.4. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of
3734 2Tl compounds.

Effective dose coefficients (Sv Bq™')

3m ly Sy 10y 15y Adult

Inhaled particulate materials (1 pum AMAD aerosols)

Type F 3.1E-10 2.1E-10 9.5E-11 5.9E-11 3.7E-11 3.3E-11
Type M, default 4.7E-10 3.5E-10 2.0E-10 1.3E-10 1.1E-10 9.8E-11
Type S 5.1E-10 3.8E-10 2.2E-10 1.5E-10 1.2E-10 1.1E-10
Ingested materials

All compounds 5.8E-10 3.9E-10 2.0E-10 1.2E-10 8.3E-11 7.2E-11

3735  AMAD, activity median aerodynamic diameter.

3736
3737  Table 34.5. Committed effective dose coefficients (Sv Bq!) for the inhalation or ingestion of

3738 29Tl compounds.

Effective dose coefficients (Sv Bq!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pum AMAD aerosols)
Type F 1.2E-09 9.4E-10 4.7E-10 3.1E-10 2.0E-10 1.9E-10
Type M, default 1.4E-09 1.1E-09 5.9E-10 4.1E-10 2.8E-10 3.0E-10
Type S 1.5E-09 1.2E-09 6.4E-10 4.4E-10 3.1E-10 3.4E-10

Ingested materials
All compounds 2.4E-09 1.8E-09 1.0E-09 6.7E-10 4.8E-10 4.5E-10

3739  AMAD, activity median aerodynamic diameter.
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35. ASTATINE (Z=85)

35.1. Routes of Intake
35.1.1. Inhalation

(377) For astatine, default parameter values were adopted for the absorption to blood from
the respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa
values for gas and vapour forms of astatine are given in Table 35.1 and for particulate forms in
Table 35.2 [both taken from Section 38 of Publication 151 (ICRP, 2022)]. By analogy with the
halogen iodine, considered in detail in Publication 137 (ICRP, 2017), default Type F is
recommended for particulate forms in the absence of specific information on which the
exposure material can be assigned to an absorption type.

(378) For astatine, and the other halogens, intakes could be in both particulate and gas and
vapour forms, and it is therefore assumed that inhaled astatine is 50% particulate and 50%
gas/vapour in the absence of information (ICRP, 2002b).

Table 35.1. Deposition and absorption for gas and vapour compounds of astatine.

Percentage deposited (%) Absorption’
Chemical Absorption from the
form/origin  Total ET; ET, BB bb Al Type  alimentary tract, fa*!
Unspecified 100 0 20 10 20 50 F 1.0

ET,, anterior nasal passage; ET», posterior nasal passage, pharynx and larynx; BB, bronchial; bb, bronchiolar; Al,
alveolar-interstitial.

“Percentage deposited refers to how much of the material in the inhaled air remains in the body after exhalation.
Almost all inhaled gas molecules contact airway surfaces, but usually return to the air unless they dissolve in, or
react with, the surface lining. The default distribution between regions is assumed: 20% ET-, 10% BB, 20% bb,
and 50% Al

It is assumed that the bound state can be neglected for astatine (i.e. f, = 0).

‘For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fi values for inhaled materials are applied [i.e. the product of f; for the absorption
Type (or specific value where given) and the fa value for ingested soluble forms of astatine (1)].

TThe value of fa= 0.094 is applicable to all age-groups.

Table 35.2. Absorption parameter values for inhaled and ingested astatine.

Absorption parameter values”

Inhaled particulate materials fe s (d) ss (d7h
Default parameter values'

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x107

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year 5 years 10 years 15 years adult
All compounds 1 1 1 1 1 1

"It is assumed that the bound state can be neglected for astatine (i.e. fo = 0). The values of s; for Type F, M and S
forms of astatine (30, 3 and 3 d™! respectively) are the general default values.
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For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default fo values for inhaled materials are applied: i.e. the product of £; for the absorption type
and the fa value for ingested soluble forms of astatine applicable to the age-group of interest (1).

‘Default Type F is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fa for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (1).

35.1.2. Ingestion

(379) There appears to be no data on the gastrointestinal absorption of astatine. In
Publications 72 and 151 (ICRP, 1995c¢, 2022), the fractional absorption was taken to be 1 for
all compounds of astatine by analogy with the lighter halides, chlorine, bromine and iodine.
The same value of fa = 1 is adopted in this publication for all chemical forms of astatine
ingested by members of the public of any age.

35.1.3. Systemic distribution, retention and excretion of astatine
35.1.3.1. Biokinetic data

(380) Astatine (At) is the heaviest member of the halogen group of elements (Group VIIA
of the periodic table). Its kinetics resembles that of the next heaviest halogen, iodine in several
ways, particularly regarding selective uptake by the thyroid gland and stomach wall, blood
clearance rates, and excretion patterns. A notable difference between astatine and iodine is that
accumulation of astatine in the thyroid is generally much lower than that of iodine, as indicated
by data for human subjects, monkeys, guinea pigs, rats, and mice (Hamilton et al., 1953;
Shellabarger and Godwin, 1954; Cobb et al., 1988; Garg et al., 1990). Also, astatine shows
longer retention than iodine in the stomach wall and in most other soft tissues (Hamilton et al.,
1953; Garg et al., 1990).

(381) Following parenteral administration to guinea pigs, the thyroidal content and
cumulative urinary and faecal excretion at 4 h represented 8.5%, 12%, and 0.8%, respectively,
of the administered amount of iodine, and 3.4%, 8.8%, and 0.4%, respectively, of administered
astatine (Hamilton and Soley, 1940). Corresponding values at 18 h were 17%, 37%, and 17%
for iodine and 5.4%, 36%, and 13% for astatine.

(382) Hamilton et al. (1953) compared the biokinetics of intravenously administered ' At
and ' in rats. Plasma clearance was rapid for both radionuclides, with clearance of '
slightly faster than that of ?!'At. At 24 h, plasma contained about 0.9% of injected *!'At and
0.6% of injected "*'I (after correction for radioactive decay). At 1 h the thyroid and stomach
wall contained on average 5.6% and 6.1%, respectively, of injected *'I, and 1.1% and 5.2%
respectively, of injected 2!! At. The stomach content of '*'T decreased steadily to about 0.5% of
the injected amount at 24 h, while the stomach content of 2! At increased to 9.9% of the injected
amount at 4 h and then decreased gradually to 5.9% at 24 h. The thyroid content of both
radionuclides peaked at 24 h, at which time the thyroid contained about 1.5% of injected ! At
and 12% of injected *'I. The 2!! At content of the thyroid decreased by about a factor of 2 from
24-48 h and showed little if any change from 48-72 d. The '*'I content decreased more slowly
than that of 2! At after 24 h, declining by about one-fourth from 24-72 h. Non-thyroidal tissues
generally contained a larger portion of injected 2! At than injected '*'I from 4-24 h. For example,
the mean 2! At content (% injected activity) of the liver, kidneys, and muscle were, respectively,
about 4.6, 5.6, and 3.6 times the content of '3'1.
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(383) Hamilton et al. (1953, 1954a, 1954b) observed higher thyroidal accumulation of 2! At
in limited studies on monkeys and human subjects than was observed in rats. In two monkeys,
the thyroid contained 9 and 20% of administered 2!' At at 24 h. In human subjects with various
forms of thyroid pathology, 4.6-17.8% of administered astatine was contained in the thyroid at
24 h, compared with 12-30% of administered '*'T (Hamilton et al., 1954a).

(384) Harrison and Royle (1984) measured the content of >!'At in blood, thyroid, kidneys,
and testes of mice over the first 28.5 h after intravenous injection. The blood content (corrected
for decay) declined to ~0.5% of the injected amount by ~12 h post injection and remained at
that level through 28.5 h. The thyroid content peaked at ~3.5% of the injected amount within
3-4 h post injection, declined to roughly 40% of the peak content by 12-15 h, and remained
near that level through 28.5 h. The pattern of uptake and retention by the testes was broadly
similar to that of the thyroid. The kidneys contained about 5-6% of the injected amount at 0.5-
1 h, 3% at 4-5 h, and 1.0-1.5% from 12-28.5 h.

(385) Larsen et al. (1998) compared the biokinetics of intravenously administered
[*'T]iodide and [*!! At]astatide in mice. Activity concentrations were determined in 12 tissues
and in blood. High concentrations of '3!I were measured in thyroid and stomach at 1 and 4 h,
with relatively low concentrations found in other tissues at 4 h. The thyroid showed high
concentrations of 2! At at 1 and 4 h but only about one-half of that of 3! at 1 h and one-fourth
at 4 h. The two radionuclides showed similar uptake by the stomach wall at 1 h. By 4 h the
concentration of '*!'T in the stomach had decreased considerably while the >!' At concentration
showed little change. On average, the ! At concentration in individual tissues (% dosage g™)
was 2.2 and 3.0 times the '*'I concentration at 1 h and 4 h, respectively.

35.1.3.2. Biokinetic model for systemic astatine

(386) The biokinetic model for systemic astatine applied in this report to all ages is the
model for astatine applied to workers in Publication 151 (ICRP, 2022). The model structure
for astatine is shown in Fig. 35.1. Transfer coefficients are listed in Table 35.3.

(387) The biokinetic model for astatine in adults is based on observed similarities and
differences in the systemic behaviours of astatine and iodine. The structure of the model for
iodine is simplified in some ways for application to astatine, e.g., by representing each of the
tissues liver, kidneys, and “Other” as single rather than multiple compartments, but additional
tissues are treated explicitly in the astatine model based on apparent differences of the level of
accumulation of iodine and astatine or its progeny in these tissues. Flow rates from plasma to
urinary bladder content, right colon content, and all other excretion pathways combined are
assumed to be the same for astatine and iodine. Fractional uptake of astatine from plasma to
the thyroid is assumed to be 40% of the value for iodine. A greater accumulation of astatine
than iodine in tissues of laboratory animals other than thyroid is assumed to result from slower
return of astatine from these tissues to plasma.
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Fig. 35.1. Structure of the biokinetic model for systemic astatine.

Table 35.3. Age-specific transfer coefficients for astatine.

Transfer coefficients (d')

Pathway 100d ly S5y 10y 15y Adult
Blood Thyroid 1 2.90E+00  2.90E+00  2.90E+00  2.90E+00  2.90E+00  2.90E+00
Blood UB content 1.18E+01 1.18E+01 1.18E+01 1.18E+01 1.18E+01 1.18E+01
Blood Salivary glands 5.16E+00 5.16E+00 5.16E+00 5.16E+00 5.16E+00 5.16E+00
Blood Stomach wall 8.60E+00  8.60E+00  8.60E+00  8.60E+00  8.60E+00  8.60E+00
Blood Kidneys 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01
Blood Liver 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Blood Lung tissue 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Blood Spleen 1.30E+01 1.30E+01 1.30E+01 1.30E+01 1.30E+01 1.30E+01
Blood Other 5.06E+02 5.06E+02 5.06E+02 5.06E+02 5.06E+02 5.06E+02
Thyroid 1 Blood 3.60E+01 3.60E+01 3.60E+01 3.60E+01 3.60E+01 3.60E+01
Thyroid 1 Thyroid 2 9.50E+01 9.50E+01 9.50E+01 9.50E+01 9.50E+01 9.50E+01
Thyroid 2 Blood 2.31E-01 2.31E-01 2.31E-01 2.31E-01 2.31E-01 2.31E-01
Salivary glands  Oral cavity 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01
Stomach wall Stomach content 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01
Kidneys Blood 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Liver Blood 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Lung tissue Blood 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Spleen Blood 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01
Other Blood 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01 5.00E+01

UB, urinary bladder; RC, right colon.
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3859  35.1.3.3. Treatment of radioactive progeny

3860 (389) The treatment of radioactive progeny produced in systemic compartments after intake
3861  ofaradioisotope of astatine is described in Section 38.2.3.3. of Publication 151 (ICRP, 2022).

3862  35.2. Dosimetric data for astatine

3863  Table 35.4. Committed effective dose coefficients (Sv Bq™!) for the inhalation or ingestion of
3864  2!°At compounds.

Effective dose coefficients (Sv Bq)

Inhaled gases and vapours 3m ly Sy 10y 15y Adult
Unspecified 9.2E-08 7.3E-08 4.0E-08 2.4E-08 1.1E-08 7.5E-09

Inhaled particulate materials (1 pum AMAD aerosols)

Type F, default 3.9E-08 3.1E-08 1.5E-08 8.9E-09 3.7E-09 2.6E-09
Type M 2.6E-08 2.1E-08 1.2E-08 7.8E-09 5.3E-09 4.7E-09
Type S 3.1E-08 2.7E-08 1.6E-08 1.0E-08 7.9E-09 7.4E-09

Ingested materials
All compounds 8.6E-08 6.8E-08 3.7E-08 2.2E-08 1.0E-08 6.9E-09

3865  AMAD, activity median aerodynamic diameter.

161



3866

3867

3868

3869
3870
3871
3872
3873
3874

3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885

3886

3887
3888
3889
3890
3891

3892

3893

3894
3895
3896

I‘ni DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

36. FRANCIUM (Z=87)
36.1. Routes of Intake
36.1.1.  Inhalation
(390) For francium, default parameter values were adopted on absorption to blood from the
respiratory tract (ICRP, 2015). Absorption parameter values and types, and associated fa values
for particulate forms of francium are given in Table 36.1 [taken from Section 39 of Publication

151 (ICRP, 2022)].

Table 36.1. Absorption parameter values for inhaled and ingested francium.

Absorption parameter values”

Inhaled particulate materials f; s (d7) ss (d7)
Default parameter values’

Absorption type

F 1 30 -

M 0.2 3 0.005
S 0.01 3 1x10*

Ingested materials®

Age-dependent absorption from the alimentary tract, fa

Assigned forms 3 months 1 year S years 10 years 15 years adult
All compounds 1 1 1 1 1 1

“It is assumed that the bound state can be neglected for francium (i.e. fo = 0). The values of s, for Type F, M and
S forms of francium (30, 3 and 3 d™! respectively) are the general default values.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the
alimentary tract, the default f4 values for inhaled materials are applied: i.e. the product of f; for the absorption type
and the fa value for ingested soluble forms of francium applicable to the age-group of interest (1).

‘Default Type M is recommended for use in the absence of specific information on which the exposure material
can be assigned to an absorption type (e.g. if the form is unknown, or if the form is known but there is no
information available on the absorption of that form from the respiratory tract).

SActivity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject
to reabsorption to blood. The default absorption fraction fi for the secreted activity is the highest value for any
form of the radionuclide applicable to the age-group of interest (1).

36.1.2.  Ingestion

(391) There appear to be no data on the gastrointestinal absorption of francium. In
Publications 72 and 151 (ICRP, 1995c¢, 2022), the fractional absorption was taken to be 1 for
all compounds of francium, by analogy with potassium, rubidium and caesium. In this
publication, fa = 1 is also applied to all chemical forms of francium ingested by members of
the public of any age.

36.1.3. Systemic distribution, retention and excretion of francium
36.1.3.1. Biokinetic model for systemic francium

(392) Francium is the heaviest member of the alkali metal family. Its systemic behaviour
has not been determined but is assumed to resemble that of caesium, which is located just above
francium in the periodic table. A much simpler biokinetic model is applied to francium than to
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3897  caesium (ICRP, 2017), however, in view of the short half-life of francium radioisotopes (< 22
3898  min) and uncertainty in the accuracy of the caesium analogy.

3899 (393) At all ages, francium is assumed to leave blood at the rate 200 d! (half-time ~5 min),
3900  with 5% going to the urinary bladder content, 1% going to the right colon content, and 94%
3901  uniformly distributed in all tissues. Francium deposited in tissues is assumed to transfer to
3902  blood at the rate 0.1 d”!. The same model was applied to workers in Publication 151 (ICRP,

3903  2022).
3904 (394) Transfer coefficients for francium are listed in Table 36.2.
3905

3906  Table 36.2. Age-specific transfer coefficients for francium.
Transfer coefficients (d')

Pathway 100 d ly S5y 10y 15y Adult
Blood  Other 1.88E+02 1.88E+02 1.88E+02 1.88E+02 1.88E+02 1.88E+02

Blood  UB content 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+01

Blood  RC content 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00

Other Blood 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01
3907  UB, Urinary bladder; SI, Small intestine.

3908  36.1.3.2. Treatment of radioactive progeny

3909 (395) The treatment of radioactive progeny produced in systemic compartments after intake
3910 ofaradioisotope of francium is described in Section 39.2.3.3. of Publication 151 (ICRP, 2022).

3911  36.2. Dosimetric data for francium

3912  Table 36.3. Committed effective dose coefficients (Sv Bq') for the inhalation or ingestion of
3913 2%Fr compounds.

Effective dose coefficients (Sv Bq!)

3m ly Sy 10y 15y Adult
Inhaled particulate materials (1 pum AMAD aerosols)
Type F 3.8E-09 1.5E-09 5.9E-10 3.8E-10 3.3E-10 1.5E-10
Type M, default 1.7E-08 1.2E-08 7.6E-09 5.0E-09 4.3E-09 3.8E-09
Type S 2.0E-08 1.5E-08 9.5E-09 6.3E-09 5.3E-09 4.8E-09

Ingested materials
All compounds 6.2E-09 1.9E-09 8.3E-10 5.3E-10 4.8E-10 1.5E-10

3914  AMAD, activity median aerodynamic diameter.
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